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ABSTRACT
Autonomous vehicles and robots are increasingly being de-
ployed to remote, dangerous environments in the energy sec-
tor, search and rescue and the military. As a result, there is a
need for humans to interact with these robots to monitor their
tasks, such as inspecting and repairing offshore wind-turbines.
Conversational Agents can improve situation awareness and
transparency, while being a hands-free medium to communi-
cate key information quickly and succinctly. As part of our
user-centered design of such systems, we conducted an in-
depth immersive qualitative study of twelve marine research
scientists and engineers, interacting with a prototype Conversa-
tional Agent. Our results expose insights into the appropriate
content and style for the natural language interaction and, from
this study, we derive nine design recommendations to inform
future Conversational Agent design for remote autonomous
systems.

Author Keywords
Natural Language Interfaces; Remote Autonomous Systems;
Explainable AI; Multimodal Interfaces; Trust; Transparency.

CCS Concepts
•Human-centered computing → Natural language inter-
faces; Graphical user interfaces; •Computer systems orga-
nization→ Robotic autonomy;

INTRODUCTION
Remote autonomous systems and vehicles are increasingly be-
ing used to facilitate operations where it is either impossible or
dangerous for humans to go. These systems may be deployed,
for example, in the energy sector, search and rescue or military
settings [31, 47, 63, 71, 79]. It is expected that, increasingly,
these systems will have high levels of autonomy and operate
in teams requiring only supervision by human operators [5,
22].
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In order for these human-supervised teams to function
smoothly, it is essential that there is clear communication
and that the human operators maintain high situation aware-
ness. To allow this, robots and autonomous systems need to
communicate their world view, system actions and reasoning,
developing appropriate levels of trust within those supervising
them and enabling sound decision making. The human opera-
tors could in future find themselves responsible for multiple,
multi-million dollar, pieces of hardware and face high stress
situations due to a) the complex goals and objectives which
comprise a mission, b) dynamic changes in the environment
and operating conditions, and c) occurrence of unexpected but
valid autonomous behavior. Unless operators have complete
clarity and confidence in their grasp of the situation, these pres-
sures can lead to unnecessarily conservative decisions such as
opting to abandon objectives or even entire missions, incurring
high costs in rescheduling [20].

As systems gain higher levels of autonomy, transparency will
become more important, not only in terms of providing an au-
dit trail but also in terms of human-robot collaboration moving
forward. Transparency has been shown to improve understand-
ing of the inner workings of an autonomous system [70, 80]
and can also facilitate adoption of technology and help in oper-
ator training. Specifically, transparency can improve the user’s
Mental Model of the system [28] in terms of the system’s
functionality, i.e. understanding what the system can do and
structure, i.e. understanding how it works. Explainability is
one facet of transparency and can help users develop realistic
expectations and interact appropriately with the system [81].
Such explanations can be verbal [38, 49], graphical [33] or
multimodal [43] in nature.

The user interfaces for remote autonomous systems often in-
clude graphical map-like displays for locating mobile systems
or robots within their surroundings along with status informa-
tion to help operators build situation awareness [6, 8]. We
believe that incorporating a Conversational Agent (CA) into
the interaction with remote autonomous systems, alongside a
graphical display, can improve transparency through a fluid
natural interaction mode enabling the provision of clear infor-
mation and explanations. Indeed, recent work in the domain
of Autonomous Underwater Vehicles (AUVs) has shown that



Figure 1. Left: Participants interacting with the Conversational Agent (CA) for remote autonomy combined with the SeeTrack graphical interface
during our study. Natural language provides a fluid and reassuring mode of interaction with complex multi-million dollar remote systems. Right:
The IVER3 autonomous underwater vehicle (AUV), under way before diving, is capable of carrying out submarine survey tasks with a high degree
of autonomy (see also Figure 4). It can be monitored and queried during its sub-sea missions using the Conversational Agent described in this paper.
Participants launched and retrieved one of these $200,000 AUVs in open water during the study. The center panel shows an example CA interaction.

combining a CA along with a graphical display can improve
the situation awareness in operators [59].

Interactive dialog between user and robot is considered to be a
characteristic of a transparent system [46, 66]. Incorporating
a CA should thus improve accessibility of these systems to
users who are not immediately familiar with the operation of
particular robots or teams of robots. Additionally, the need
for an intelligent interface agent to monitor robots and sup-
port human operators when workload, environment and robot
capabilities change has already been foreseen [15].

To our knowledge however, there has not to date been a study
with the purpose of exploring CA interaction for remote au-
tonomous systems. In this paper, therefore, to enable that ex-
ploration, we have chosen the AUV domain as the context for
our qualitative investigation of a CA for remote autonomous
systems. This domain is ideally suited for the study of in-
teraction with highly autonomous vehicles as the constraints
of low bandwidth communications have already motivated
the development of systems that facilitate the cooperation of
multiple highly autonomous AUVs [44, 53].

We developed a prototype CA with suitable capabilities, in-
cluding explanations of autonomous behavior, for interaction
with dynamic autonomous AUV missions. We used this in
our study of a group of marine research scientists and engi-
neers at an autonomous underwater robotics summer school.
During a program also including underwater computer vision,
sensors and remote operated vehicles, 12 participants experi-
enced handling an AUV and interacting with a CA combined
with a graphical interface called SeeTrack (Figure 1). Then,
through in-depth semi-structured interviews, the participants
provided insights into the kind of CA interaction that they
think would work for the operators of teams of remote au-
tonomous vehicles. We have used these insights to develop
a set of recommendations for designers of CAs for remote
autonomous systems.

The contributions of this paper are summarized as:

• Qualitative insights into effective styles of Conversational
Agent (CA) interaction for remote autonomous systems
derived from 12 marine research scientists and engineers,
with expertise in robotics, AUVs and AUV simulations.

• Nine design recommendations for designers of CAs for
remote autonomous systems.

In the rest of this paper, we first describe prior work forming
the background to our investigation. Then, we describe the CA
we used in our study to inspire participants to discuss styles of
CA interaction. We describe the study participant group; the
activities they undertook; the equipment and applications used;
and the methods for gathering and analyzing the qualitative
data. Following that, we discuss in detail the insights in the
results and present recommendations for designers of CAs for
remote autonomous systems. Finally, we draw conclusions
and discuss future work.

BACKGROUND
In this section, we describe other prior work forming the back-
ground to our investigation not already discussed in the intro-
duction.

Explanations
As discussed in our introduction, explainability is a facet of
transparent robots/systems and can improve the Mental Model
of the user [14], as well as increase confidence and perfor-
mance [33, 38]. Lim et al. [38] described two styles of ex-
planation: "Why" and "Why not", to explain the functionality
and the structure of a system, respectively. They showed that
explaining why a system behaved a certain way increased both
understanding and trust, whilst "Why not" showed only an
increase in understanding. Successful explanation generation
depends on the user, their knowledge and the context, as users
will only take the time to process the explanation if the ben-
efits are perceived to be worth it [16]. The content of the
explanations should, therefore, be adapted to the user. For
example, Kulesza et al. [30] showed that novice users would
rather have all the details in the explanations (high sound-
ness/fidelity), whereas Garcia et al. [14] studied experts, who



presumably could fill in the gaps and preferred more broad
level explanations (low soundness/fidelity). In both studies,
being given all the possible explanations was important to the
user. As explanations are key to transparency, the CA used in
the study described in this paper was equipped with an expla-
nation system, which allowed the levels of detail and amount
of explanations to be varied.

Conversational Agents and their Domains
ELIZA [77], one of the first CAs ever developed, aimed at
having open conversations with its users. ELIZA’s goal was
to maintain a coherent conversation. Its range of conversa-
tions was limited by it being heavily based on rules. Research
then turned to simpler tasks that could easily be modeled with
fewer rules and, later, machine learning. A few examples
of the domains chosen to implement Conversational Agents
were travel planning [74], weather forecasting [83], public
transit [13, 55, 67], flight schedule [54, 62], real-estate [18]
and restaurant and bar information [29, 61]. These CAs are
often named in the literature as ‘slot-filling’ denoting the finite
number of information slots, which need to be filled in order
to perform a database query. These CAs were initially imple-
mented as finite-state machines. Later, these were replaced by
machine learning methods (e.g. [78]) making implementation
less cumbersome, more robust to speech recognition errors,
less dependent on the developer’s knowledge about the domain
and easier to export to new domains.

With the advent of deep machine learning, researchers have
worked on creating open-domain CAs that can have social
conversations i.e. ‘chitchat’, using techniques such as neural
models [58, 72] and crowdsourcing [3, 24, 34]. However,
their dialogs are not always coherent. In addition, their lack
of ability to interact in dynamically changing contexts limits
their use in certain domains, such as the one described here.

On the other hand CAs with situation awareness in dynamic
contexts have been built for in-car navigation. The vehicle
location and non-verbal features were used to train the machine
learning model for a navigation CA [45]. This scenario shares
some similarities with the one presented in this paper, since in
both cases the CAs require a perception of the environment that
is constantly changing over time (unlike slot-filling CAs). The
WITAS [35] framework approached this problem by focusing
on control and waypoint specification. Another framework
that deals with situation awareness is TRIPS [12]. TRIPS is
a combination between a CA (also known as dialog system)
and "Specialized Reasoners" that can solve problems such as
planning actions, scheduling events or simulating future plans.
In addition, just as in our case, both TRIPS and WITAS can
be combined with a graphical interface where the environment
is represented.

Design Principles for Conversational Agents
Design principles should provide guidelines to improve and
maintain the quality of CAs. How to measure the quality of
task-orientated dialog systems, as discussed above, has been
much researched (see [19] for an overview). Evaluation of
non-task oriented social dialog systems, on the other hand, is a
new emerging challenge, as there is no clear measure for task

success and evaluating whether rapport has been established
is far from clear-cut [9, 39].

One task-orientated evaluation framework is PARADISE [73],
which is founded on decision theory and posits that usability
(usually in the form of subjective user satisfaction) can be
broken down into two contributing quality criteria of task
success (e.g. restaurant booking) and dialog costs (e.g. time
on task, dialog length). This framework attempts to capture
the multi-dimensionality and complexity of dialog through
multi-linear regression analysis (MLR), which can give some
insights into the factors contributing to high and low user
satisfaction. Deriving design principles from MLR is possible
by examining the variable weights. As such, optimization
functions for adaptive systems have been derived from linear
regression analysis [57]. Other evaluation frameworks, such
as those based on hidden Markov models [11], are harder to
interpret and form into general design principles.

With slot filling systems, the community has adopted design
principles based on minimizing dialog length as was shown in
the DARPA communicator evaluation using PARADISE [74].
For social dialog, design is focused on lengthening dialogs to
reflect user engagement [52]. For example, in the criteria of the
Amazon Alexa Challenges students can win USD1M if their
system can engage the user for 20 minutes. For interaction
with remote autonomous systems, it is unclear what metrics to
optimize for. For example, does a long dialog mean that the
user is fully immersed and reflect high situation awareness? Or
does it imply inefficiencies and the CA should try to minimize
dialog length, especially in emergency response situations?

One recent issue is transparency and it has emerged in several
interviews reported by Jain et al. [26] that CAs are often not
transparent to their users, meaning that users are not aware of
their capabilities as they interact with the agent for the first
time. Most users seem to dislike the trial procedure that they
usually perform to become aware of the system capabilities
[25]. The suggested design principle is that the CA should
be able to create the awareness of its capabilities both at the
beginning and during the interaction. However, doing so in a
natural and appealing manner is non-trivial.

Some obvious design principles involve minimizing errors
and misunderstandings [74]. In addition, failing gracefully
is important in terms of understanding when the CA is in
trouble [82] and providing mitigating strategies to minimize
user frustration, such as asking for clarification. In multimodal
systems, there is the opportunity to provide visual (graphic)
information and selection menus to the user [25] but this may
come at a cost in terms of user-initiative interaction [68], where
the user should be able to drive the interaction in a free flowing
manner.

Unlike most of the CAs used in the above-mentioned studies,
in our study the CA aims to be an instrument, which is assistive
to the operator of a remote autonomous system. Therefore,
our contribution is in the design principles from this relatively
new domain.



Figure 2. System architecture of the MIRIAM CA. NLP/G are Natural
Language Processing/Generation. The architecture is explained in the
text.

THE MIRIAM CONVERSATIONAL AGENT USED FOR THE
STUDY
A Conversational Agent (CA) was developed known as Mul-
timodal Intelligent inteRactIon for Autonomous systeMs
(MIRIAM). MIRIAM a) closely integrates with an AUV soft-
ware system that provides a particularly high level of auton-
omy such as is needed for the teaming of multiple remote au-
tonomous vehicles and b) uses a mixed initiative approach in
both generating its own notifications about important changes
in status and also allowing users to query specific information.

Figure 2 shows the system architecture, which we describe
here: In the context of AUVs, such vehicles undertake objec-
tives such as surveying a patch of seabed and several of these
objectives together comprise a Mission Plan. The CA uses a
rule-based Natural Language Processing (NLP) engine that
contextualizes and parses the user’s input for intent, formaliz-
ing it as a semantic representation. The Interaction Manager
can process both static and dynamic data, such as vehicle and
objective names. It uses Natural Language Generation (NLG)
to present output to the user. It uses the Dialogue History
and Mission Data for context. It is able to give explanations
of certain autonomous behaviors based on an interpretable
Autonomy Model described by Garcia et al. [14]. This al-
lows it to describe why a given behavior is occurring based
on the current mission status and history and the possible
reasons. It can then provide a list of reasons along with an
estimate of the likelihood that a given reason explains the cur-
rent behavior. The Processor gathers the Mission Data from
the SeeTrack System through its Application Programming
Interface (API). The SeeTrack1 commercial AUV software
system (comprising a graphic user interface and an autonomy
system) communicates with the autonomous vehicles, in this
case an AUV. SeeTrack is described later in the "Activities,
Equipment and Applications" subsection in "STUDY" below.

STUDY
The aim of the study was to explore Conversational Agent
interaction for remote autonomous systems. In this section, we
1Made by Seebyte Ltd., the SeeTrack user interface and mission
planning system interfaces with Seebyte’s Neptune autonomy system.
For simplicity, we refer to both collectively as SeeTrack.

first describe the participants and the setting in which the study
took place. We then detail the activities undertaken and the
equipment and applications used by the participants. Finally,
we describe the interview method used to gather qualitative
data from the participants and the analysis of that data.

Participants and Setting
We chose to conduct our study at a robotics, sensors and re-
mote underwater vehicle summer school as a) the attendees
would have experience in robotics and engineering and b) it
would provide an immersive environment for the study of
autonomous systems interaction. It took place at a special-
ist residential underwater training facility in Scotland on the
shores of a deep water sea inlet or sea loch. Ethical approval
was obtained from our institution.

After giving their informed consent to take part, the partici-
pants completed a short demographic questionnaire, providing
details of their occupation, education level, areas of expertise
and experience with AUVs and AUV simulations. There were
twelve (ten male, two female, similar to current gender pro-
portions of UK engineering and technology sector employees,
9% female [69]). They aged from 24 to 39 (M 31.4, Med 31,
SD 4.9). All were non-native English speakers with English
as a Foreign Language skill as a minimum. They all reported
their occupation as researcher with five indicating a level of se-
niority such as assistant professor or senior researcher. Eleven
reported from 1 to 15 years expertise in robotics (M 5.3 yrs,
Med 5 yrs, SD 4.3 yrs). They had, between them, expertise
in other areas such as sensors, unmanned airborne vehicles
(UAV), embedded systems, marine biology and computer vi-
sion. They were asked to rate their expertise with AUVs using
a 5-point Likert type item, with opposing semantic anchors,
ranging from 1- "Novice, I know nothing about them" to 5
- "Expert, I have a deep understanding of them". One par-
ticipant reported level 2, nine level 3 and two level 4. None
reported levels 1 or 5, i.e. all had some AUV expertise. When
describing their knowledge of the SeeTrack system for mis-
sion planning, three stated they had limited knowledge while
nine had none. When asked if they had previously worked
with AUV simulations, six stated that they had and six had not.
Therefore, we describe our participant group as consisting of
12 marine researchers and engineers with expertise in robotics,
AUVs and AUV simulations but with little or no experience
of the SeeTrack software. This leads us to expect that, while
they would be approaching the combined SeeTrack and CA
as a new interface, their opinions on the AUV interaction they
would experience in the study would be well-informed.

Activities, Equipment and Applications
In this subsection, after briefly listing the four main blocks of
activities that summer school attendees undertook, we describe
in detail what our study participants did and the equipment
and applications they used during the AUV activity directly
connected with the CA study.

Participants experienced four blocks of summer school activ-
ities: 1) remote underwater vehicle pilot simulator training,
2) underwater vision and mapping, 3) sensor networks, and
4) autonomous underwater vehicles (AUVs). Participants



Figure 3. The CA web application. A) Synchronized streamed video
capture of mission in SeeTrack showing vehicle traces, predicted tracks,
objectives not yet completed, and a table of vehicle status; B) Drop-down
menu of missions; C) Critical alerts are pinned, e.g. "WARNING! Veh1
fault: rudder motor"; D) Scrolling chat history panel; E) User enters
query here; F) Mission clock e.g. 10:41:38/11:18:38 indicating there are
37 minutes of mission time remaining; G) Mission speed-up drop-down
menu - choose from 1x to 8x speed; H) Fast Forward - click and drag
slider; I) Play/Pause mission.

would experience the CA within this fourth activity (the AUV
activity). Day 1 consisted of lectures on the different blocks’
topics. At the end of the AUV lecture, focusing on mission
planning, the CA study was described and the 12 participants
signed appropriate consents to take part. On the second and
third days, participants undertook practical activities associ-
ated with the four blocks. The participants experienced each
block of activities in a group of four individuals and, where
appropriate, rotated through subsidiary activities to experience
everything within each block.

The AUV activity lasted three and a half hours excluding
a 30 minute break and involved two parallel activities: 1)
hands-on launching and retrieving an AUV, and 2) a classroom
session where they would experience AUV mission planning
and monitoring software and the CA. These two activities ran
in parallel with two participants each and then they swapped
round after a break. The AUV activity was divided this way to
allow an appropriate ratio of safety trained staff to participants
when afloat handling the AUV.

The AUV mission planning and monitoring software,
which we used is SeeTrack (shown within Figure 3). It is
commercial software and combines a chart and tabular user in-
terface (UI) allowing complex mission planning on a PC using
an autonomy system, which also runs on the AUVs’ embedded
computers. The AUVs communicate with the UI via networks.
The networks can be wifi or acoustic for real vehicles or wired
for simulated vehicles. While the autonomy system has been
designed to allow missions consisting of sub-sea, surface and
air vehicles in the marine domain, the context of our study
was sub-sea missions involving sonar survey and object re-
aquisition objectives. The SeeTrack software provides an API
allowing the CA system access to the mission and vehicle
data (Figure 2). From this it builds a mission database, which
grows as the mission progresses and on which the CA can run
queries in response to user interaction, generating alerts and
notifications in response to mission and vehicle events.

Figure 4. Left, the IVER3 AUV on the quayside and right, just after
being placed in the water. (See also Figure 1, right).

Figure 5. Left: Four participants receiving a safety briefing before two
undertake launching and retrieval of an AUV. The other two, first, would
do the classroom activity and later launch the AUV. Right: Participants
monitor the AUV on a laptop in the boat using the SeeTrack software.

The two parallel AUV activities were designed to give the
participants experience of: A) handling an AUV capable of
highly autonomous behavior (Figure 4), and B) first planning
and executing missions for a team of two AUVs using the
SeeTrack system and simulated AUVs, and then interacting
with the combined SeeTrack and CA system in a number of
single and multiple vehicle mission scenarios.

AUV Activity A: This allowed participants to experience
handling, launching and recovering an IVER3 AUV. The
OceanServer IVER3 is designed for sonar survey and object
acquisition. It has endurance of 8-14 hours and speed of 1 to 4
knots. Its main sensor is high resolution side-scan sonar. It has
wireless and acoustic communications and GPS and Doppler
velocity log (DVL) location. It is compatible and can operate
autonomously with the SeeTrack UI and autonomy system. A
typical mission for a single IVER3 might comprise surveying
areas of the seabed with its sonar, visiting specific locations
and then using sonar to reacquire (i.e. revisit) a previously
located object. For our participants to experience a complete
launch and recovery of the AUV, a short simple pre-planned
mission consisting of a single small survey area and launch
and recovery points was used. Participants were given a safety
briefing and geared-up in personal protective equipment (Fig-
ure 5, left). They participated in loading and launching the
AUV from a small boat and monitored what the AUV was
doing from a laptop running SeeTrack in the boat (Figure 5,
right).

AUV Activity B: During the classroom session two partic-
ipants at a time were shown how to plan a mission with a
researcher demonstrating before taking turns to create and
edit a survey objective. The mission was then executed in



real time on a simulator, simulating two AUVs running the
autonomy system. The participants watched the early stages
of the mission unfold including observing the division of the
objectives between the two simulated AUVs, an important
aspect of the cooperative autonomy that the SeeTrack system
enables [44, 32]. At the mission planning stage, operators can
suggest which AUV in a team does which objectives but once
the mission starts, the autonomy system takes over allowing
each AUV to undertake objectives in an order that the system
calculates to be optimal, given the current conditions such as
prevailing currents and vehicle availability.

After seeing their planned mission unfold in its early stages,
participants were introduced to the CA, which was added as
a web browser window panel beside the SeeTrack UI display.
The participants could use the CA to query the system about
what each vehicle was doing and the progress of the mission
that they themselves had planned.

The first option would be for the participants to experience the
CA during a real mission. However, these missions can last
for a number of hours with activity spread thinly throughout.
Therefore, in order for the subjects to experience all the aspects
of the CA within a shorter time period, we created a special
purpose interface for simulated missions, which we will refer
to as the CA web application (see Figure 3). To create this
application, simulated missions were run and the SeeTrack
UI display was video captured while the back-end of the CA
system captured the mission and vehicle data in real time and
stored it in a database for use later. When a particular mission
is selected from the web application menu that mission’s video
is streamed while allowing chat through the CA to have access
to the timestamped data synchronized with mission progress.
It allows mission time to be sped up in increments e.g. x4 or
x8, fast forwarding through uneventful periods in a mission or
directly accessing particular points in a mission to experience
what CA interaction is like during a particular type of mission
event.

While using the simulations in the CA web application, partic-
ipants did three sub-activities involving text chat with the CA.
1) a short quiz based on a specific mission asking questions at
specific timed points, which could be answered using the CA,
2) a directed activity (a set of steps on paper) to show the CA’s
explanation capability and how the amount of detail in expla-
nations can be changed using the CA’s settings menu and 3)
free exploration of the different scenarios and interaction using
the CA. During these 3 sub-activities, participants were able
to refer to a 3-page printed table showing what information
the CA can be asked about. While participants used keyboards
for text input in the text chat, they also wore headphones to
listen to speech output (Figure 1, left-hand side).

Below is an example interaction from the quiz sub-activity. It
shows mission time, which was sped up x8. Here, ETR refers
to Estimated Time of Retrieval and Target0 is a re-acquisition
objective for the AUV to visit and search:

USER:‘How many row scans has the vehicle done’

SYSTEM:‘Survey1 has 4 survey legs completed so far.
The objective is not finished yet’

SYSTEM:‘The vehicle is reporting a change in the
mission ETR of more than 5 minutes. The vehicle now
estimates it will finish the mission by 15:45:24’

SYSTEM:‘The vehicle is in transit to Target0’

USER:‘what is the total mission progress’

SYSTEM:‘The vehicle is reporting that it has
completed 48.48% of the mission’

Method
After the participants had completed the activities detailed
above, they were interviewed either the same day or the fol-
lowing day [23]. For consistency, there was one interviewer,
an author. We used semi-structured interviews [7, 65], the
method used, for example, by Le Bras et al. to develop a set
of design recommendations for automated concept map layout
and explanation systems [33]. This method allows particular
topics of interest to be explored while also enabling the pursuit
of interesting participant views as they arise. To stimulate
and focus discussion, the interviewer used the following re-
sources: a picture of the IVER3 AUV, printouts of screen shots
of the interfaces they had used, the printed materials to which
they had referred during the classroom activity, and a laptop
running the CA web application to allow display of the CA’s
output during an interaction involving an explanation of AUV
behavior. Participants were paid US$20 as compensation for
their time in interview.

While developing the semi-structured interview script, initial
topics for questions were drawn from a prior mixed-methods
study of the effect on operator situation awareness of a CA
[59]. That study reported a brief analysis of the comments
of a group of participants who were experts in the SeeTrack
software, gathered in a post-task questionnaire. The topics
raised in those comments included usefulness for less experi-
enced operators, number of notifications and succinctness and
a wish for added multimodality. In addition, prior work on
explanation styles [30, 38] and, more recently, Garcia et al.’s
quantitative study, also using experts in SeeTrack and the AUV
domain [14], prompted us to further explore CA explanation
styles qualitatively with our group of more realistic potential
users.

Each interview started with warm up questions asking partici-
pants to talk about their previous experience with robots and
AUVs using their answers to the demographic questionnaire as
a starting point. They were asked about using the IVER3 AUV
in particular and how they felt when operating and being re-
sponsible for AUVs. Further questions included: asking their
views on the frequency and length of alerts, and the amount
of information they contained; the format of explanations and
their level of detail; the CA’s ability to set reminders and
whether and how this should be exploited; managing missions
involving multiple vehicles (experienced by participants in
simulation during the study) and over multiple domains i.e.
sub-sea, surface and air (this being a theoretical capability
of SeeTrack and the CA). The interview setting is shown in
Figure 6.



Figure 6. Interview setting. The participant was wearing personal pro-
tective equipment having recently completed the last of their AUV activi-
ties. This activity included launching and retrieving an AUV from a boat
launched from a pier facility.

Coding
Each interview lasted approximately 30 minutes. Audio
recordings were made and these were professionally tran-
scribed. The coder (an author) then listened to all the audio
a) to complete the transcriptions at the few points where jar-
gon or lack of clarity had defeated the transcriber, and b) to
become fully familiar with all the interviews. We followed a
thematic qualitative analysis methodology used in other qual-
itative human interface studies (e.g. [60]). The data from
the interviews was categorized using qualitative data analysis
software (NVivo10) [64]. A grounded theory (or inductive)
approach with open coding was used [7, 65]. The final code
book contained 103 codes and 811 coding instances and from
these the overarching themes were identified.

The themes are set out below along with discussion of their sig-
nificance and relation to prior work. Design recommendations
are developed in response to the themes.

RESULTS, DISCUSSION AND DESIGN RECOMMENDA-
TIONS
Below we detail and discuss the themes, setting design rec-
ommendations with each, using a structure similar to Padilla
et al. [51]. We quote from the data to illustrate the themes
and readers are reminded that our participants were non-native
English speakers.

There were eight themes found in the data:

1. Users: Adapting CA behavior for different user roles and
preferences.

2. Style and content of information: What information to
present and how to present it, including relevance filtering.

3. Presentation to enable focus: Highlighting facts and dif-
ferentiating individual agents in multi-agent scenarios (mis-
sions with two or more vehicles).

4. Correct interpretation of user input: Sensitivity and ro-
bustness to conversation context.

5. Hands-free use: Desirability of hands-free in some circum-
stances such as difficult environments.

6. Multimodality: Using a CA with a graphic interface.

7. Reassurance, explanations and trust: Expensive equip-
ment and complex missions as a source of anxiety. Desir-
ability of explanations.

8. Post-conversation follow-up: Summarizing and communi-
cating unresolved items post-conversation.

Theme 1: Users
This theme touched most of the other themes as participants
expressed opinions about the various aspects of CAs in the
context of their own experience. They might state their own
preference but would also add that it depends on the user
and proceed to give their view of what users in other roles
might find appropriate. This is summed up by participant 9
(P9) when commenting on the amount of information content
(itself a subsequent theme): "Some information is too much.
Some may be too low, I don’t know. That depends on the
end user, so who is inquiring what"[P9]. Our participants
suggested, in all, six user roles:-

1. Trainee operators: "[for] an operator [. . . ] getting the
courses for being an operator [. . . ] Training. It could be
useful to have this type of information"[P5]

2. Operators unfamiliar with the usual control system:
"MIRIAM is good for people with not so much knowl-
edge about the system. Because you can ask her every-
thing"[P7], "an untrained user[. . . ] that user wouldn’t
recognize that something is a bit off from the traditional
interface, right?"[P2].

3. Non-technical operators unfamiliar with robots: "I
think for a not cyber person [it] is a good tool"[P4].

4. Researcher\Engineer\Developer : "It depends on the per-
sonal level. [. . . ] if it is a researcher or a developer, you
want to see everything."[P12]

5. Experienced operators: "I think it depends on the user
you are working with, or if the person is experienced with
the system or not"[P1]

6. Commanders or supervisors of complex missions: "For
example the captain [. . . ] in the ship that wants to know
how the mission is going "[P4].

Our participant group clearly thought that a CA should cater
for a number of user roles and, hence, modify the interaction
in style and information content relative to the user. Indeed,
there has been recent work on response generation that can
improve the quality of the interaction by simply adding the
user ID into the neural model [1] or by integrating complex
persona models [36]. Various aspects of user adaptation are
discussed further in the themes below.

R1: We recommend that CA designers implement adaptive
systems, in which important aspects of interaction are tailored
to suit a given user’s role, better meeting their needs and
achieving a closer match between expectation and execution
[48]. Those aspects to be adjusted depending on the user can
include, for example, style and content of information and
frequency of updates and are addressed further in subsequent
themes.



Theme 2: Style and Content of Information
This theme relates to the well-studied challenge of information
presentation in natural language generation (NLG) and to
many aspects of the CA interaction including explanations of
behavior and alerts and notifications. Here, we discuss this
theme in terms of the two traditional aspects of NLG, i.e. what
to present, and how to present it [56].

With respect to how to present information, P12 wished for
output from the CA to be personalized to the user: "Obviously
it’s very good to have the updates. I don’t know about the
phrasing, depending on the subject who’s getting it". This re-
flects previous work such as Janarthanam & Lemon [27], who
adapt referring expression generation for technical instructions
based on the level of expertise of the user. Studies have also
looked at adapting wording style to the user by inferring their
preferences [10] or by converging to the user’s style during
the interaction, known as entrainment [4, 40].

With respect to what information should be given, P9 pointed
out that this would also need to be adjusted depending on the
user’s role (already quoted in "Users" theme). P9 went on
to suggest that user interest about specific parameters could
be used to infer what they may wish to receive in future un-
prompted updates: "Or it [the CA] could learn, like I ask
battery and from like you ask for battery I [it] will tell you
battery even though you don’t ask". Previous work has looked
at adapting content to a user model [75], allowing for memory
of interaction and preferences across dialogs. This is useful in
the case of an operator who has to run multiple missions over
time.

Information presentation work in the field of NLG has made
frequent use of summaries, e.g. for restaurant recommenda-
tions [75]. The need for summaries of mission activities were
pointed out here by P2: "If I remember correctly, MIRIAM
would go vehicle by vehicle if it’s finished [its tasks] [. . . ]
maybe there could be some kind of summary of like, "50 per
cent of the vehicles have finished their tasks" or something
like that.". Summaries have been generated for reporting of
AUV post-mission reports [21, 76], as well as, in-mission as
seen here.

Finally, this theme also relates to intelligent alerting, in terms
of what information the system should offer up and its rele-
vance to that user at that point in time in a specific context. The
CA would need to take into account user preference for infor-
mation and the interaction history (as illustrated in the above
quote from P9) but also the user’s immediate surroundings e.g.
in a small boat after launching an AUV (see the "Multimodal-
ity" and “hands-free” themes) and even their current workload
[41].

R2: Information presentation (how and what to say) from
robot missions should be adjusted based on user role, pref-
erences, interaction history and user context to better match
user expectations, as stated in R1.

R3: CAs should include mechanisms allowing information
content to be filtered for relevance and summarized based
on a) user role, b) individual user preferences, c) particular
mission and environment conditions, and d) dynamically
modified through system monitoring of user queries.

R1 to R3 reflect Grice’s cooperative principle, particularly
the maxims about quantity i.e. providing neither more nor
less information than is needed by a conversation partner [17].
While it may have been possible to predict that this would be
the case, we have here empirical evidence that users expect
from the CA what they would expect from a human.

Theme 3: Presentation to Enable Focus
Also related to Grice’s maxims on quantity, P7 pointed out
that often the output would be lengthy with the sought for
fact or value being provided but embedded within a sentence.
"sometimes the answer is a long sentence. And the information,
the most important parts, don’t pop up. [. . . ] We need like a
bold or color thing.". Here, the desire is to bring emphasis to
the specific facts in the CA’s output.

P3 saw a need for differentiating between utterances concern-
ing different robots in a multi-robot mission conversation and
additionally to be able to focus the conversation temporarily
on one specific robot by selecting that robot:"you have only
one, one MIRIAM [. . . ] you have a MIRIAM, a Josie, a Peter
and [each] corresponds to each vehicle.", and then, "You want
to speak to MIRIAM, okay, you select MIRIAM. You want to
speak to Peter . . . ". Here, the suggestion is to allow focus
on a specific robot in a team by facilitating the interaction to
be filtered down to just that robot and give it an individual
identity. Here, work on CA personality and social interaction
would be relevant and perhaps contribute to differentiating
between robots. This may also heighten engagement when the
conversation branches in this manner [37]. Perhaps different
voices in speech output could also be used. P8 also wished for
clear graphic differentiation of vehicles: "In the text [. . . ] give
a color for vehicle one, vehicle two, vehicle three. With the
colors we can understand quickly if [it] is vehicle one or two".

R4: CA designers should a) emphasize facts and values
within utterances formed as sentences with highlighting in
the CA’s text output, and b) consider taking steps to differ-
entiate output associated with different robots e.g. by using
color in text output and c) allowing the conversational fo-
cus to be switched to a specific robot/agent within a robot
team temporarily, assigning alternate personalities to the in-
dividual robots or alternate voices in speech output enabling
differentiation and heightened engagement.

Theme 4: Correct Interpretation of User Input
This theme addresses the issues of correctly interpreting user
input by resolving and/or avoiding ambiguity through auto-
correction, context-sensitivity, and context clarity.

Participant P3 expected the CA to be more robust in the face
of typographical errors: "When for example I type a question



and I write a wrong word, [. . . ] MIRIAM answers "sorry but I
couldn’t answer" to that and why not suggest a question, like:
"Did you mean . . . ?" Okay?". P7 described her interaction in
which she found that the CA had too short a memory about
what had come before:"MIRIAM gives me a warning, I don’t
know, about batteries, something like that. And I was writing
a message, so, when I pressed the ENTER button I didn’t see
the warning. So, she was asking me if I want to know more
information about the warning. And I send the message. And
[then] when I reply "Yes", MIRIAM doesn’t know [to] what I
am answering, yes.".

This is an example of a gap between system context and user
context, a phenomenon noted in CAs from other domains [25,
26, 42]. Here, it arises from the CA not correctly managing
sub-dialogs in a way that the user might have expected. The
user might have been better served by the CA seeking to
look back in the conversation record to find the most recent
utterance for which "Yes" would have been an appropriate
user response and then asking a question to clarify the current
context. The use of visual (or graphic) feedback to maintain a
match between system context and user context is discussed
later in the "Multimodalty" theme.

R5: We advise CA designers to a) provide context-sensitive
auto-correction for input and b) provide as long a conversa-
tion context as possible within which users can implicitly
refer to entities. (See also the Multimodality theme where we
recommend providing context feedback graphically.)

Theme 5: Hands-free Use
P2 was experienced at launching and monitoring AUVs and
talked about speech output: "If you don’t want to be looking
at the computer screen on a rib [a small boat], which you
definitely don’t want to do, it’s really helpful." and then "So
if you can have something, this [the CA], on your earphone
and you’re just getting updates from this, it’s quite helpful, I
think. So this higher level mission status or some warnings
about some fault or something like that. ". This reflects what
was found in a recent investigation of interaction with CAs,
which concluded that "hands-free" was seen as the principle
use case [42]. The reasons found in that study for using speech
included: hands-dirty or otherwise engaged; device not within
reach; speech felt to be faster; and attention divided between
activities. Most of these would apply when operating in the
field or in a boat, which was the situation our participant was
describing.

R6: Provide voice input and output to allow hands-free use
when needed e.g when used in problematic environments.

Theme 6: Multimodality
Here, we address the rationale of using chat alongside a graph-
ical interface and their further integration. Three subthemes
were identified.

Subtheme - The cognitive difference between visual
(graphical) and verbal information: P3 pointed out that

there are individual differences in regard to consuming infor-
mation visually and verbally : "Some people prefer the verbal,
the language and some people prefer the visual, the visual
things.". P7 stated outright: "I am more visual.". Here, our
participants were acknowledging differences in cognitive style.
This is the psychological construct that explains individuals’
differing preferences in the mental processing of information.
Recent models of the visual and verbal dimensions of cog-
nitive style take account of advances in neurophysiology [2].
The salience of this aspect of cognition to multimodal inter-
faces is recognized [50]. Recent work involving combining
a CA and a graphic information display showed that, while
cognitive style was a factor affecting the success with which
users extracted information from the combined interface, oper-
ator situation awareness was still improved by using a CA and
a graphical display in combination, irrespective of cognitive
style [59].

Subtheme - The practical limitations of what can be con-
veyed either graphically or verbally (and hence their com-
plimentarity): P1 felt that a graphical interface had its place
but could not provide all the required information and sug-
gested that some explanations might have to be verbal: "I think
the visual information helps a lot, but sometimes I understand
that visual information is not enough for you to have a com-
plete picture of what’s going on. [. . . ] sometimes, robots do
some things that you won’t expect or you would not under-
stand what’s going on, and in that case I thought it [the CA]
was useful.".

Subtheme - The desirability of tighter integration between
graphical and verbal interaction: Participants wanted to be
able to interact with the map on the graphic display to indicate
vehicles, points or regions to be referred to in conversation,
e.g. "Also like if I’m the boat captain I can tell you [MIRIAM]
I’m at this position [indicating clicking on the map] [...] am I
interfering with any of the AUVs on the water?" [P9]. Here,
such use of multimodality could not only provide information
for the conversation but also help to maintain a match between
the CA’s current context and that of the user in the case of
selecting a vehicle on the map. Use of graphical feedback was
found to reduce the occurrence of mismatch between system
and user context in a study by Jain et al. [25]. Such steps
would help to avoid gaps between system execution and user
expectation as described by Norman [48].

R7: If the situation affords, CAs should not be used in isola-
tion. Instead, to exploit both visual (graphical) and verbal
cognition, combine them with graphical representations of
the autonomous system state. If possible integrate the CA
and the graphical components as a combined multimodal
interface. The CA’s current conversational context can be
displayed graphically in a multimodal interface. If possi-
ble allow users to manipulate the conversation context by
multimodal input.

Theme 7: Reassurance, Explanations and Trust
Participants expressed concern about the risk of losing expen-
sive equipment. When asked how they felt when putting the



IVER3 AUV into the water P5 replied "Some fear! It’s com-
plicated because we always don’t know if we can get the robot
back again." and similarly " I feel scared because it is a lot of
money in the robot. In our robots also [it] is like that."[P8].
Participants thought access to good monitoring information
helped to alleviate such anxieties: "If [. . . ] I am operating this
vehicle I have some assurance that it will operate okay, and
with MIRIAM I’ll just check if it’s okay. "[P8].

P4 addressed the aspect of autonomous behavior giving rise
to anxiety: "If the robot starts to act in a strange way I will
be scared a little of that behavior right? And the trust will
decrease obviously". Then, referring to the CA’s explanations,
P4 indicated that the CA could give reassurance: "I think that
information for example that MIRIAM tells, I think it’s good
information. Like now the robots did that because of that.
[Indicating steps in an explanation on the stimulus laptop]". It
is clear that participants felt that reassurance could be gained
from the CA and that explanations helped in this. The style
of explanations was also probed. When asked about the de-
sirability of just being given the most likely or all possible
explanations (low vs. high completeness [30]), participants
wanted to see them all e.g. "For me I want to know all the
reasons" [P4]. These findings align with previous work on a
different sample of AUV operators [14]. However, previous
work has not compared information needs of various person-
nel in the AUV domain. P2: "If it’s someone that is not the
operator, [. . . ] wants to have some insight of what’s going on,
maybe he doesn’t want to see [all] that." Thus, different user
roles may require different levels of completeness.

R8: Firstly, simply relaying facts via a CA is reassuring. CAs
should be equipped with explanation capabilities to reassure
users when system status might be uncertain or behavior is
obscure. The detail provided in the explanations should be
varied depending on the user role and preference (see also R2
and R3).

Theme 8: Post Conversation Follow-up
The CA used in the study had the capability to dynamically
set reminders, e.g. to contact maintenance about a fault at
a later point. It also took the initiative and alerted the user
to equipment faults. P9 thought that a post-mission email
would be useful: ". . . you can have the reminder that when you
finished if you have an oil leakage at the end of the mission, if
you send an email on everything, okay: "Attention this robot is
having an oil leakage, cannot operate."". P11 also suggested
that any outstanding items of business from the conversation
should be summarized in a post-conversation email including
any faults flagged for maintenance: "If something goes wrong
a reminder for example at the end of the mission generates
some sort of mission resumé [. . . ]" and then "[. . . ]depending
on the number of errors that happened and faults and the
severity, for example if it’s critical or low. Generate a report
and recommend some sort of maintenance. That might be very
useful. ".

One aspect of this, concerning the reminders, echoes existing
CA behavior in commercial CA products such as Siri and

Google Home. The other aspect, summarizing and collating
particular events from a conversation, such as fault reports
has been the focus of work on natural language post-mission
reporting [76].

R9: CAs for remote autonomous systems should generate
natural language reports to summarize mission events and
collate user requests for action post-conversation. These
could be communicated by email to individual users as an
aide-memoire to facilitate action.

CONCLUSIONS AND FUTURE WORK
In this paper, we investigated interaction with a Conversa-
tional Agent for remote autonomous systems. The context
for our study was Autonomous Underwater Vehicles (AUVs)
capable of collaborating on multi-objective missions and oper-
ating with a high degree of autonomy. 12 research scientists
and engineers experienced handling a high value, highly au-
tonomous, marine survey AUV and using a prototype, mixed
initiative Conversational Agent integrated with a commercial
map-based autonomy user interface. During semistructured
interviews, they revealed qualitative insights into what would
be the desirable attributes of a Conversational Agent for inter-
action with teams of remote autonomous robots. We discussed
these insights, related them to relevant prior work and derived
nine design recommendations applicable to Conversational
Agents for remote autonomy. These range from adaptive sys-
tems tailoring information filtering and frequency of updates
to fit the user role (R2), through intelligent context sensitivity
(R5), hands-free use (R6), exploiting multimodality (R7) and
providing explanations of autonomous behavior customized
for different user roles (R8) to collating unresolved items into
post-conversation reports (R9).

In future work, the recommendations we would wish to pri-
oritize in our research are R7 on Multimodalty and R8 on
Explanations, i.e. we plan to investigate the benefits and
practicalities of implementing the use of multimodal input to
control conversation context (both user perception and system
sensing), and also intend investigating what different levels
of detail in explanations are suitable for which of the various
user roles.

We hope our recommendations will inspire the design of Con-
versational Agents for remote autonomy thus will increase
adoption and empower users to interact successfully with the
complex autonomous systems of the future.
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