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Abstract—This work looks at when to transmit localisation
messages in the scenario where an Autonomous Surface Vehicle
(ASV) has a planned path and can estimate a submerged AUV’s
positions based on acoustic updates. Acoustic localisation mes-
sages are in general transmitted periodically, but by estimating
the movement of the involved vehicles, messages can be transmit-
ted at a time when the geometrical relationship between vehicles
should reduce the receiving vehicles error and uncertainty to the
greatest extent. This paper looks at how selection of Time of
Launch (ToL) within a Time-Division Multiple Access slot can
reduce this based on history of transmission and the estimated
geometrical relationship between vehicles over time. The method
to select ToL is dependent on the localisation method, we look at
this from the perspective of Extended Kalman Filter and to solve
the trilateration problem using Non-linear Least Squares. The
benefit of proposed approach is in scenarios where the operating
vehicles have their own objectives, and cannot adapt their path
to achieve a more beneficial transmission position. The proposed
approach shows a reduction of error and uncertainty, while using
a navigational dataset collected by an Autonomous Underwater
Vehicle when compared to other methods of which transmission
times are selected.
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I. INTRODUCTION

Maritime robots are seeing an increase in usage in various
fields including Mine Countermeasures, archaeology, bathy-
metric surveys and pipe inspection among others. Convention-
ally these missions have often been carried out by a single
Autonomous Underwater Vehicle (AUV), but as the vehicles
and systems mature, multi-vehicle or swarm missions are
seeing and increased usage. For most missions, if gathered data
cannot be geotagged with high confidence the data becomes
less reliable and useful. This is an issue for submerged vehicles
as Radio Frequency (RF) signals do not propagate well in
water and therefore, there is no access to Global Positioning
System (GPS). Instead submerged vehicles, as AUVs, have to
rely on Dead Reckoning (DR) from integration of sensor data
to estimate its position. Due to noise and drift in sensors, this
method results in an error which will grow continuously. If the
estimated error grows too large, the most common approach
is for a vehicle to surface to regain access to GPS, which is
a time and energy consuming task. Due to this, it is desirable
to use external sources as a way to localise the vehicle. This
can be either by using features in the natural environment to
perform e.g. Simultaneous Localisation And Mapping (SLAM)
[1], [2] or artificial sources such as acoustic communication.

Acoustic communication can be used in various ways as a
method for localisation including measurement of the angle
of the received signal (Ultra-Short Base-Line (USBL)), Time
Difference of Arrival and range-only (distance travelled of an
acoustic message). In this paper the latter is considered as
it scales well with an increasing number of vehicles if One-
Way-Travel-Time (OWTT) is used [3] to measure the distance
travelled of the message. OWTT can be used if vehicles have
synchronised clocks [4]. OWTT is based on messages that are
transmitted with a time stamp of the ToL. When such message
is received, the receiver can calculate the time difference of
ToL and the time the message is received. By multiplying this
value with the speed of sound in water, generally considered to
be 1500 ms, the speed is however dependent on environmental
factors such as conductivity, temperature, and pressure [5].
If the distance of an acoustic message is measurable and it
contains data which includes the origin (transmission position)
of the message, range-only localisation can be applied [6], [7].
There are different methods to solve this localisation problem
such as recursive Bayesian methods, Monte Carlo [8] and nu-
merical solutions. We will look at this from the perspective of
Extended Kalman Filter (EKF) and by solving the trilateration
problem using Non-linear Least Squares (NLS). In both of
these methods, the quality of the solution is dependent on
the geometrical configuration between transmitter and receiver.
The problem of improving acoustic localisation is generally
looked at as a path planning problem, where a dedicated
vehicle can move to transmit from positions that are estimated
to have a good impact on the receiving system [9]-[11]. For
AUVs using EKF as a distance-based localisation method,
Bahr er al. [10] choose transmission position based on that
the uncertainty is decreased the most, if transmitted along
the semi-major axis of uncertainty of the receiving vehicle
[12], which can be seen in Fig. 2. Tan et al. [13] aims to
transmit the first message along the semi-major axis and then
plan paths for a vehicle to send consecutive messages with
as close to 90° as possible to the receiving vehicle. In [14]
it is stated that one of the main factors which reduce the
performance in range-only localisation is “ranging from the
same relative direction”, which can be seen in Fig. 3a where
the uncertainty is only reduced along one axis when a vehicle
consecutively transmits on the same axis. Localisation can also
be performed by solving the trilateration problem, which is to
find the intersection between geometric shapes [15]-[17]. The
quality of the solution in the trilateration problem is dependant
on how the relative direction of incoming transmissions are
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distributed. In [18], Kelly er al. shows that the more evenly
spread around the receiver the relative transmission positions
are, the better the solution should be. Which is also shown in
[19], where the quality of trilateration is evaluated based on
landmark positions and their confidence. This can be seen in
Fig. 5.

This paper aims to improve the quality of the range-
only localisation by selecting when to transmit a localisation
message, within a Time-Division Multiple Access (TDMA)
slot (Fig. 1), such that transmitted message should reduce the
error and uncertainty the most. It looks at the scenario where
multiple vehicles have their own objective and therefore cannot
re-plan their path to achieve a good geometrical relationship
between the vehicles. This is performed by discretising the
estimated paths of the vehicles and based on localisation
methods minimising a cost function to find the estimated best
ToL.

The remainder of the paper is organised as follows: section
IT presents the range-only localisation methods considered
in this paper and III describes how the selection of ToL is
performed to reduce the error and uncertainty on receiving
vehicles. The results are presented in section IV and V
concludes this paper.

B T — T T

Fig. 1: TDMA is used to divide time among units to reduce
message collision on a shared channel such as acoustics in
water. A: Time is divided into frames. B: A frame consists
of time slots. C: A time slot is the time a platform has the
possibility to transmit and has an optional guard time in the
beginning and end to avoid collisions from other time slots.

II. RANGE-ONLY LOCALISATION

Range-only localisation is the method of estimating a
position based on distance to one or more landmarks. Land-
marks in this case is considered to be the transmission of
an acoustic massage. For AUVs this is usually based by
receiving an acoustic message containing the message’s origin
and time-stamp(s) to calculate to distance the message has
travelled. While there are many methods to perform this type
of localisation, this paper considers EKF and solving the
trilateration problem using NLS. The uncertainty and error
from range-only localisation is a product of the geometrical
relationship between transmitter and receiver, the DR of the
receiver and the error in the distance measurement. In this
section the two methods are described along with how the error
and uncertainty is affected by the geometrical configuration.

A. Extended Kalman Filter

The EKF is based on a prediction and update step. Each
step estimates the state of the filter and the associated uncer-

tainty (covariance matrix). The prediction step estimates the
system’s state and how the uncertainty changes based on the
estimated noise of equipped sensors and the motion model
of the vehicle. The update step tries to fit a measurement
(range-only localisation message) to the predicted state of the
system to update the estimated state and covariance matrix
(2) according to how well the measurement fits the model.
This is performed using the Kalman gain (1), which takes
the uncertainty of the predicted state and measurement noise
into consideration. While the measurements are non-linear,
they can be treated as linear around the current estimate. The
linearisation is performed through using a Jacobian (3). In
(3), LM is the origin of the transmitted message and X the
estimated state of the AUV. For an in-depth description of
EKF, see [20].
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The localisation filter on the AUV is assumed to be in
the 2D plane (north (x) and east(y) parallel to the surface
of the sea) as depth is considered known due to pressure
sensors. The covariance matrix can be visualised as an ellipse
in the 2D plane. To reduce the covariance matrix the most, a
measurement should be observed on the semi-major axis of the
ellipse representing the uncertainty [10], [13]. This can be seen
in Fig. 2. If a measurement is on the semi-minor axis instead,
the uncertainty is reduced the least. This can be seen in Fig.
3a where a vehicle transmits localisation messages in a zigzag
pattern, but each message is transmitted from the semi-minor
axis of uncertainty on the AUV. As such, the uncertainty is
only reduced on one axis, while the other axis (along travel
direction) grows unbounded (as in Fig. 3b).

B. Trilateration using Non-linear Least Squares

Trilateration is the problem to try to find the intersection
between geometrical shapes. This can be numerically solved
by for example NLS. NLS for trilateration is used to find the
parameter (position/intersection) which minimises the differ-
ence between measured and the estimated distances (5). This
is performed by trying to fit m observation to a non-linear
model of n parameter, where m > mn. For the range-only
localisation problem, observations are the distances measured
to their positional origins and the parameters is the intersection
of those measurement. The reason that we need m to be larger
than n is to find a unique solution, as the intersection of m
shapes, where m < n in n dimensions will produce n or more
solutions. As in the EKF method, the trilateration problem is
solved in 2D, which will be to solve the intersection of m > 2
circles. This paper will consider m = 3 measurements for the
problem, as this is the least amount needed. While solving the
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Fig. 2: Ellipses representing the covariance matrix before and
after an EKF update. The geometrical relationship effects
the resulting covariance matrix. The closer to the semi-major
axis of uncertainty the landmark (source) is, the more the
uncertainty is reduced.
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(a) A zigzag pattern with periodical transmissions might in worst
case only reduce the uncertainty on one axis. The black ellipse
is the initial uncertainty (from the covariance matrix), the blue
is the covariance matrix when an observation of a landmark is
made, the green is after it have been incorporated in the EKF.
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(b) The major axis of uncertainty grows unbounded when the

observed landmarks does not change geometrical relationship.

From the ellipse in Fig. 3a.

Fig. 3: An example where a zigzag pattern with periodical
ToLL minimises one axis of uncertainty while the other grows
without a bound.

trilateration problem the measurements need to be considered
to be received at the same point in time. This can be done
by compensating the origins of previously received messages
based on the DR of the vehicle since the time each message
was received. A visualisation of this can be seen in Fig. 4.
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The uncertainty, or the region of possible solutions, is
dependant on the noise in the measurement of the distance
of the signal, the DR of the vehicle between measurements
and the distribution of the origin of those signals. How the
distance and distribution of the landmarks affect the solution
can be seen in Fig. 5. In Fig. 5b, it can be seen that when
the landmarks are evenly distributed, the area of possible
solutions is the smallest, which should produce the most
accurate solution.
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Fig. 4: By compensating the movement of the landmarks
(CNA’s transmission position), the AUV can solve the NLS
problem as if all signals where received simultaneously.

III. SELECTION OF TOL TO REDUCE ERROR AND
UNCERTAINTY IN RANGE-ONLY LOCALISATION

The procedure of choosing the estimated best ToL is per-
formed by creating sections containing a set of the estimated
geometrical configurations between the vehicles over time.
The number of configurations depends on the time available
in the TDMA slot and the discrete time-interval this slot is
divided into. The geometrical configurations are based on the
estimation of the AUV’s position (from data received over
acoustic communication such as estimated position, heading
and speed) and the pre-planned path of the transmitting vehicle.
The sections, in which the transmitter is allowed to transmit
from (according to TDMA), is used as the input to the
algorithm which selects one ToL from each TDMA slot. An
overview of this can be seen in Fig. 6. The selection of ToL
is dependent on which localisation method is used, which will
be described in this section.

A. Extended Kalman Filter

As mentioned in section I and II-A, the reduction of the
uncertainty is greater the closer the transmission position is to
a point on the semi-major axis of uncertainty [10], [13]. The
method to choose ToL is therefore to aim to reduce the residual
angle of the vector between receiver and transmitter and the
semi-major axis. When planning for multiple transmissions
ahead in time, the planner will estimate how a transmission
of a localisation message will affect the receiving platform
and update the model of the AUV based on this. In the case
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(a) Small distribution - Large area
of possible solutions

(b) Equal distribution - Small area
of possible solutions

(c) Small distribution - Large area
of possible solutions

Fig. 5: The distribution of the landmarks and the noise in the range measurement affect the uncertainty on the receiver. The
more equal the landmarks are distributed the less uncertainty in the computed solution (red area).
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Fig. 6: The estimated path of the AUV is updated over acoustic
communication. Using this information and the planned path
of the CNA, the CNA selects the ToLs which should reduce the
uncertainty and error on the AUV when a localisation message
is transmitted at selected ToLs.

that some, or all, of the navigational sensors are known on the
AUV, this can be used to estimate how the uncertainty would
grow in the prediction step. This could be useful in scenarios
where the AUV for is not equipped with a Doppler Velocity
Logs (DVL) to measure speed and the uncertainty along the
direction travelled is increasing more than the uncertainty
based on the heading.

B. Tilateration using Non-linear Least Squares

Trilateration is based on solving the problem with a set of
observations, as such, if localisation messages have been trans-
mitted earlier than the the current instance of the ToL planner
is executed, the information about the previous transmission
should be taken into consideration. For the problem of solving
for 3 measurements, the goal is to find a configuration in the
sets such that the 3 angles (relative direction) from the AUV
to the CNA is as evenly distributed as possible [18], [19].
This is done by finding the combination where a value from
each of the sets A, B and C' which minimises the function
(8). However, after the first 3 sets have been evaluated and the
fourth or later ToL is to be chosen, the history of planned ToLs
should be used as an input. The input will then be that set A
and B only contains 1 value (the previously selected ToLs),

and as such the only value to be selected is the one from set
C.

cost(9,¢,0) = CW(6,¢,0) + CCW (4,(,0) (6)

4

fla, B,7) = |cost(a, B,) — cost(B, a, )|

+|cost(B, a, ) — cost(vy, a, f)] @)
+|cost(v, a, B) — cost(a, B,7)]
a,bvc = mz’n(f(avﬂa’)’)vaeA,ﬁGB,'yGC) (8)

In (6), CW() and CCW() returns the minimum residual
angle from 6 in the clockwise respective counter-clockwise
direction to € and 8. In (7), |g(...) — g(...)| will have a cost of
0 if all angles are evenly distributed (27/3 between each, as
seen to the left in Fig. 7a) and a cost of 27 when all the angles
are equal to each other. (7) adds a cost to each combination of
the cost of the 3 angles. An example of the cost in different
configurations of angles can be seen in Table I. A visual
example where a few different sets of angles are evaluated
to find the configuration (1 from each set) that minimises (8)
can be seen in Fig 7b.

[} [E] ol cost(av, B,7)
0 | 27/3 | —2r/3 0

0 /2 —7/2 I

0 /6 —m/2 /3

0 /6 —7/6 37

0 0 0 61

TABLE I: Example of the cost (equation (7)) between the three
angles o, § and ~y

IV. RESULTS

The proposed method to select ToL. was compared to the
option of static transmission times in the TDMA slot. For
the comparison a TDMA with a considered slot length of 20
seconds and two frames, (Fig. 1). The AUV is considered to
update the transmitter every 4:th frame (160 seconds period).
For the comparison, both moving transmitters (ASVs) and
static (buoys) are considered with different objectives, paths
and configurations. The resulting error and uncertainty on an
AUV is compared in Table II and III. The AUV is based on
a navigational dataset collected by AUV Sirius [21], which
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(a) The function used to find optimal transmission positions for
NLS compares the clockwise and counter-clockwise residual to
the other evaluated angles which the estimated positions of the
vehicles would create. (Left) evenly distributed angles creates
good conditions to solve the NLS problem, while (right) is a
worse setup to solve the problem, this can be seen in Fig. 5.

Angles Towards AUV

1.0 T
= set A
= set B
= set C
0.5+
0.0} s
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(b) 3 Sets of the angels from geometrical configurations between
an AUV and an ASV. The thicker lines show the 3 configurations
which creates the most evenly distribution between landmarks,
and hence should produce the most accurate result.

Fig. 7: The geometrical relationship that produces the lowest
error for the trilateration problem is when the angle (relative
direction) of the received messages’ positional origin are as
evenly distributed around the receiver as possible, as shown in
S.

was gathered over a roughly 2.5 hours long mission outside
of Tasmania, Australia. The dataset consists of two parts,
the first consists of data from navigational sensors, in which
DVL and Inertial Navigation System (INS) have been used as
DR. The second part is what will be considered the ground
truth, which contains the first set in combination with a visual
SLAM by Mahon et al. [22] and USBL. The ASV, buoys
and distance measurements are simulated. The noise in the
simulated distance measurements has a Gaussian distribution
with a o between 0.8 - 6.0 meters, the lower value is based
on the results in [23]. The static transmission times within the
TDMA slot are 0, 10 and 19 seconds. The different scenarios

evaluated (which can be seen in Fig. 8) are a single buoy in the
centre of the AUV’s survey, three buoys surrounding the survey

(transmitting in a round robin fashion), an ASV performing a
lawnmower survey, circling the area and a kinodynamic vehicle
follower [24]. The average error on the AUV is reduced in all
simulated cases as seen in Table II. In all cases the transmitting
platforms have no prior knowledge about the AUV. It is
adapting based on the incoming acoustic messages containing
the AUV’s estimated position, heading and velocity and when
the localisation method is EKF, a 2x2 covariance matrix is
included. It can be seen that the scenarios where the relative
direction between the vehicles change is small (as single buoy,
circle and lawnmower) the resulting error using NLS is large
but the proposed method of choosing ToL has a slightly smaller
error. This agrees with the arguments (and (7)) that the angles
should be as evenly spread as possible to find a good solution,
while in this case the relative motion between the vehicles
does not change the relative direction between them by much.
In other cases, such as the following behaviour from [24]
(example of a path seen in Fig. 8), there is a larger variation
between the two vehicles and both EKF and NLS are able to
achieve a significant reduction in error by selection of ToL
compared to static times. While using EKF, the average area
and the length of the semi-major axis of uncertainty (1 std) is
reduced by proposed method which can be seen in Table III.

1000 T — T
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Fig. 8: Example of different paths and configurations in the
evaluated scenario. In follower, the transmitting vehicle is
trying to minimise the average distance between the vehicles
based on [24].

V. CONCLUSION

In this paper we present an approach and comparison on
when to to transmit acoustic localisation messages from a
pre-planned path. The work looks at this from two different
localisation methods: Extended Kalman Filter and trilateration
solved by Non-linear Least Squares. The purpose of this is
to reduce error and/or uncertainty, which the proposed method
does by estimating the geometrical relationships between trans-
mitters and receivers to find transmission times that are more
beneficial than static time slots within a TDMA. The proposed
method is compared to static times within the TDMA slot,
and shows a reduction in each scenario for both error and
uncertainty using a dataset collected by an AUV.
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NLS EKF
ToL Follow 1 Buoy 3 Buoys Circle lawnmower Follow 1 Buoy 3 Buoys Circle lawnmower
Adaptive | 32.5231 52.9168 21.4256 | 95.3472 64.3936 12.8678 | 24.8505 15.0826 23.3604 25.0183
First 35.0191 | 67.3370 | 21.9328 96.3762 72.2156 17.2557 | 25.7671 16.1390 | 23.8536 25.5230
Mid 35.0186 | 62.4183 21.9237 97.5743 722774 18.8510 | 25.9981 16.1619 24.3698 25.2221
Last 34.9383 | 77.3339 21.9138 96.5713 69.7508 17.2540 | 259215 16.1406 24.3449 25.5401

TABLE II: The average error (in metres) on the AUV showing that the proposed method of selection of ToL reduces the error
at all scenarios. The Dead Reckoning is 189.6065. The different paths and configurations can be seen in Fig. 8.

EKF avg. area EKF avg. max semi-major axis length
ToL Follow 1 Buoy 3 Buoys Circle lawnmower | Follow 1 Buoy 3 Buoys Circle lawnmower
Adaptive | 5.6815 12.0044 14.7607 9.8183 11.0378 1.6975 3.0766 3.2370 2.7523 2.7401
First 6.3424 12.0280 15.2291 10.1190 11.1660 1.8795 3.0774 3.3412 2.8505 2.8180
Mid 6.6622 12.0943 15.1910 10.0466 11.0488 1.9639 3.0952 3.3413 2.8379 2.7856
Last 6.3430 12.0354 15.2305 10.1232 11.1685 1.8797 3.0801 3.3416 2.8518 2.8186

TABLE III: The average uncertainty (area and length of semi-major axis) represented with 1 standard deviation from the same
scenarios as in Table II.

This

ACKNOWLEDGEMENTS

work was supported by the EPSRC funded

ORCA RAI-HUB (EP/R026173/1) and USMART projects
(EP/PO17975/1) as well as the Innovate UK project Au-
tonomous Surface / Sub-surface Survey System, project num-
ber 102304.

[1]

[2]

[3]

[7]

[8]

[9]

REFERENCES

I. Mahon and S. Williams, “SLAM using Natural Features in an Under-
water Environment,” International Conference on Control, Automation,
Robotics and Vision, 2004.

D. Forouher, J. Hartmann, M. Litza, and E. Maehle, “Sonar-based
FastSLAM in an underwater environment using walls as features,” JEEE
15th International Conference on Advanced Robotics: New Boundaries
for Robotics, ICAR 2011, pp. 588-593, 2011.

R. M. Eustice, L. L. Whitcomb, H. Singh, and M. Grund, “Experimental
results in synchronous-clock one-way-travel-time acoustic navigation
for autonomous underwater vehicles,” Proceedings - IEEE International
Conference on Robotics and Automation, pp. 4257-4264, 2007.

R. M. Eustice, H. Singh, and L. L. Whitcomb, “Synchronous-clock, one-
way-travel-time acoustic navigation for underwater vehicles,” Journal
of Field Robotics, vol. 28, no. 1, pp. 121-136, 2011.

S. Jamshidi and M. N. A. Bakar, “An Analysis on Sound Speed
in Seawater using CTD Data,” Journal of Applied Sciences, no. 10,
pp. 132-138, 2010.

S. E. Webster, R. M. Eustice, H. Singh, and L. L. Whitcomb, “Advances
in single-beacon one-way-travel-time acoustic navigation for underwater
vehicles,” International Journal of Robotics Research, vol. 31, no. 8,
pp- 935-950, 2012.

J. Vaganay, J. Leonard, J. Curcio, and J. Willcox, “Experimental valida-
tion of the moving long base-line navigation concept,” 2004 IEEE/OES
Autonomous Underwater Vehicles (IEEE Cat. No.04CH37578), no. 1,
pp. 59-65, 2004.

S. Saeedi, M. Seto, and H. Li, “Fast Monte Carlo localization of AUV
using acoustic range measurement,” Canadian Conference on Electrical

and Computer Engineering, vol. 2015-June, no. June, pp. 326-331,
2015.

A. Munafo, J. Sliwka, and J. Alves, “Dynamic placement of a constella-
tion of surface buoys for enhanced underwater positioning,” MTS/IEEE
OCEANS 2015 - Genova: Discovering Sustainable Ocean Energy for a
New World, pp. 1-6, 2015.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

A. Bahr, J. J. Leonard, and A. Martinoli, “Dynamic positioning of bea-
con vehicles for cooperative underwater navigation,” IEEE International
Conference on Intelligent Robots and Systems, pp. 3760-3767, 2012.

J. M. Walls and R. M. Eustice, “Toward informative planning for co-
operative underwater localization,” 2014 Oceans - St. John’s, OCEANS
2014, 2015.

K. Zhou and S. Roumeliotis, “Optimal motion strategies for range-only
distributed target tracking,” 2006 American Control Conference, p. 6
pp-, 2006.

Y. T. Tan, R. Gao, and M. Chitre, “Cooperative path planning for
range-only localization using a single moving beacon,” IEEE Journal
of Oceanic Engineering, vol. 39, no. 2, pp. 371-385, 2014.

M. F. Fallon, M. Kaess, H. Johannsson, and J. J. Leonard, “Efficient
AUV navigation fusing acoustic ranging and side-scan sonar,” Proceed-
ings - IEEE International Conference on Robotics and Automation,
pp. 2398-2405, 2011.

G. Papadopoulos, M. F. Fallon, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative localization of marine vehicles using nonlinear state
estimation,” I[EEE/RSJ 2010 International Conference on Intelligent
Robots and Systems, IROS 2010 - Conference Proceedings, pp. 4874—
4879, 2010.

M. F. Fallon, G. Papadopoulos, J. J. Leonard, and N. M. Patrikalakis,
“Cooperative AUV navigation using a single maneuvering surface
craft,” International Journal of Robotics Research, vol. 29, no. 12,
pp. 1461-1474, 2010.

J. S. Willners, P. Patron, and Y. Petillot, “Moving Baseline Localization
for Multi-Vehicle Maritime Operations,” OCEANS - Aberdeen, 2017.
A. Kelly, “Precision dilution in triangulation based mobile robot posi-
tion estimation,” In Intelligent Autonomous Systems, 2003.

Z. Yang and Y. Liu, “Quality of trilateration: Confidence-based iterative
localization,” IEEE Transactions on Parallel and Distributed Systems,
vol. 21, no. 5, pp. 631-640, 2010.

D. Simon, Optimal State Estimation: Kalman, H Infinity, and Nonlinear
Approaches. New York, NY, USA: Wiley-Interscience, 2006.
Australian Centre for Field Robotics, “AUV
http://marine.acfr.usyd.edu.au/systems/auv-sirius/.”

1. Mahon, S. B. Williams, O. Pizarro, and M. Johnson-Roberson, “Effi-
cient view-based SLAM using visual loop closures,” IEEE Transactions
on Robotics, vol. 24, no. 5, pp. 1002-1014, 2008.

R. Almeida, J. Melo, and N. Cruz, “Characterization of measurement
errors in a LBL positioning system,” OCEANS 2016 - Shanghai, 2016.
J. S. Willners, Y. Petillot, P. Patron, and D. Gonzalez-Adell, “Au-
tonomous Kinodynamic Path Planning for Following and Tracking
Vehicles,” OCEANS 2018 - Charleston, 2018.

Sirius,

Authorized licensed use limited to: Heriot-Watt University. Downloaded on March 03,2021 at 16:39:39 UTC from IEEE Xplore. Restrictions apply.



