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ABSTRACT

This thesis aims to improve autonomy and reliability in marine robots. This is achieved
by combining path planning and acoustic localisation into cooperative navigation. Within
path planning it is important that the robot’s found path is feasible, collision-free and
can be planned in real-time. This thesis reviews state-of-the-art approaches within the
field of path planning along with proposing novel approaches for optimal planning under
motion constraints for both goal-based and cooperative scenarios. The aim for cooper-
ative scenarios is to support submerged vehicles with acoustic messages which can be
used for localisation. This is an important problem for robots while subsurface, as it is
a GPS-denied environment. Conventionally acoustic localisation has been performed by
manually deploying static acoustic beacons which require extensive calibration and suffer
from an operational area limited by the acoustic range of the transponders or USBL.

This thesis presents 3 major novel contributions to the field. The first one is a start-
to-goal real-time path planner with path repairing capabilities for vehicles to operate in
unknown environments. This extension to Hybrid-State A* makes it more useful for both
planning in known and unknown environment showing a reduced computational time
compared to re-planning. The second contribution presented is a leader-follower planner,
where an AUV act as the leader and an ASV follows them to reduce the distance over
time. This work takes the motion constraints into consideration such that it can handle all
cases where the vehicle operates at different speeds, making it more generic and easier
apply to multiple scenarios than classic control methods. The third major work presented
is planning for cooperative missions where an ASV plans a path to position itself to reduce
the navigational error on an arbitrary amount of AUVs. This work is adaptable both to
the scenarios as well as the computational power on the ASV. It shows to in worst case
perform as well as compared methods and in most cases outperform them by reducing the
error on the AUVs with up to 60%. The results of this thesis show an improvement in the
field through a combination of simulated and real data.
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1 Introduction

“The surface of the Earth is the shore of the cosmic ocean. From it we have

learned most of what we know. Recently, we have waded a little out to sea,

enough to dampen our toes or, at most, wet our ankles. The water seems

inviting."

- Carl Sagan

The ocean is the origin of all life we know of in our universe. It is the first thing we
look at in the search for extraterrestrial life. This source of life is also the main contributor
to the air we breath, with the phytoplankton in it generating up to 85% of the oxygen
in our atmosphere. It controls the weather and the climate on earth. In 1890, Alfred
Thayer Mahan published the book The Influence of Sea Power Upon History, where he
proclaims that to control the sea is the key to a nations power, both commercially and
military. Despite immense technological advancements since the late 19th century, this
statement still holds true. The ocean is still the main medium for transportation of goods
with over 90% of trade between countries performed by ships. It is by all means the
most important resource on earth, as much to the people living in a remote village as it
is to whole nations. Yet, we have explored just a fraction of it. As today, Over 90% of
the ocean remains unmapped, while our closest astronomical bodies, the moon and Mars,
have accessible and detailed maps of them. This thesis will provide suggestions on how
to improve the mapping of oceans by improved autonomy and reduced position error to
improve the georeferencing of collected data.

1.1 Motivation

The ocean is an unpredictable, dangerous and unforgiving environment. There are high
risks associated with manned underwater work, both in vehicles and by divers. Robots
have the possibility to replace, or work cooperatively with humans to achieve the same
goals. They can perform long-term missions (up to months at a time) and operate in the
deep ocean. Missions for maritime environment could include using a Remotely Operated
Vehicle (ROV) to inspect and repair infrastructure or Autonomous Maritime Vehicles
(AMVs) to gather environmental data. The difference between ROVs and AMVs (which
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includes Autonomous Underwater Vehicles (AUVs) and Autonomous Surface Vehicles
(ASVs)) is based on the level of autonomy. An example of the different types of vehicles
can be seen in Fig. 1. An ROV is tethered and controlled by an operator whilst AMVs
operates autonomously to solve a task or objective. As ROVs require tethered operations,
this is usually performed from large ships, including the crew and the ROV-pilot. The use
of ships with staff is an expensive operation. The autonomy of AMVs can significantly
reduce the cost of such operations by removing the need for a ship and a lot of the personal
required. Small AMVs such as number 1 and 2 in Fig. 1 can be launched from shore or
by a small boat by as little as one or two people while larger vehicles and ROVs often
need a boat along with a crew.

Fig. 1: Different types of unmanned vehicles are categorised based on their level of auton-
omy. (1) AUVs and (2) ASVs are un-tethered and work autonomously to solve objectives.
(3) ROVs are tethered and require continuous human interaction.

There are many benefits from using AMV. This has caught the attention of various
scientific areas and industries to develop and use marine robots in their field of work. A
selection of these include:

• Defence: Out of the earth’s 197 countries, 146 have a coastline. Maintaining con-
trol over coastlines is a key element to protecting the country [1]. Maritime robots
are being used in the defence sector in jobs ranging from ensuring safe passages for
ships to searching, classifying [2] and disposal of mines (Mine Countermeasures).

• Industry: The oil and gas industry use marine robots to repair, inspect and maintain
infrastructure [3, 4]. The usage of commercially available platforms grows each
year; the predicted growth between 2018 and 2022 is 74% [5].

• Oceanography: Marine robots help collect data used for environmental monitoring
[6], coral reef conservation[7], deep-sea and arctic exploration [8]. Data from such
missions can help scientists understand how life emerged, forecast the weather and
how the climate is changing.
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• Archaeology: The work of exploring, locating and observing sunken ships [9]
or structures [10] have conventionally been performed by divers. As AMVs are
becoming more accessible, this field has expressed growing interest in using au-
tonomous vehicles that can perform these missions for longer time, at deeper scenes
and with a higher precision than divers.

• Search and rescue: AMVs have been used in search and rescue missions from
accidents as plane crashes [11] and natural disasters such as hurricanes [12, 13] as
they can help cover large grounds without much human interaction and operating
close to 24 hours a day.

A shared problem for marine vehicles is that water highly attenuate high frequency ra-
dio signals. As a result there is no access to Global Navigation Satellite System (GNSS)
(and hence no Global Positioning System (GPS)). For un-tethered vehicles communica-
tion is also highly limited in both range and bandwidth, as they have to rely on acoustics
communication while submerged. Without access to GPS while submerged, the vehi-
cles have to rely on other methods to estimate their position. This is most commonly
performed by Dead Reckoning (DR), which is a method to integrate sensor data over
time. Due to noise and drift in sensor, DR results in having an error that grows without
bound over time. The rate at which the error grows is dependent on the quality of the
sensors available. To achieve a low drift DR (<1% error of the distance travelled [14])
the vehicles need to be equipped with an expensive and high precision Doppler Velocity
Log (DVL). If a vehicle however is not equipped with a DVL the error can reach above
20% of distance travelled. The heading of the vehicles can also be drifting or have an
offset. This causes an issue related to the quality of collected data. If a vehicle cannot
georeference an observed feature with high enough reliability for re-acquisition in a sub-
sequent mission, the data loses much of its value. This data is often collected by sonars or
cameras, which can also be used for Simultaneous Localisation And Mapping (SLAM).
SLAM is one method that can sense the natural environment and use this as a source for
localisation[15, 16, 17, 18]. However when this methods rely on observation and (re-
observation) of distinguishable features in the environment. For optical sensors this is not
always possible due to adequate water conditions. Another method to bound the positional
error from DR is by using acoustics localisation. Acoustics can be used to measure the
angle or distance of an incoming acoustic transmission. Using the angle or distance along
with knowledge about where the signal originated from, acoustic localisation methods
can be applied [19, 20, 21, 22, 23]. These methods are however dependent on additional
infrastructure or vehicles, but is not reliant on re-observing features in the environment
and can hence be used in most locations. Localisation using acoustic communication
can be done in multiple ways. The traditional approach is Long Baseline (LBL) which
is based on using multiple wide-spread, pre-deployed, static and calibrated acoustic bea-
cons. ASVs have recently been used to replace these beacons. This overcomes many
of the shortcomings associated with LBL beacons. Using mobile beacons enables the
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beacons to adapt to the AUVs and they can position themselves in strategic beneficial
positions to improve the acoustic localisation technique. An other approach using acous-
tic communication is Ultra-short Baseline (USBL), where the direction of an incoming
transmission is measured. If this direction of the signal is used in addition to the range a
position can be estimated. These systems are often easy to deploy but more expensive [24]
and the direction measurement includes noise, which over long distances can translate to
large error, it does however bound the error.
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1.2 Problem Statement

The use of robotics for maritime missions includes mine countermeasures [2, 25], bathy-
metric surveys and search- and rescue-missions. These missions share the need to be able
to geotag collected data. The quality of the data gathered from such missions is related
to how well it can be geotagged. An object of potential interest loses much of its value
if the uncertainty in its position is too high to enable re-acquisition in a subsequent mis-
sion [25, 26, 27]. If a potential target of interest cannot be re-observed in a subsequent
mission due to low localisation accuracy, a new survey might be required to rediscover
the target. This is a time consuming and expensive task. Other risks associated with
unreliable localisation is increased risk of collisions or loss of vehicle. In multi-vehicle
operations where a vehicle (from here on referred to as a Communication and Naviga-
tion Aid (CNA)) is dedicated to support others with acoustic localisation messages can
reduce this error, making it a safer and more reliable operation for AUVs. During such
multi-vehicle missions, it is also important that the CNA operates in a safe manner. For
a vehicle to move in a safe manner it is important to ensure that its path is feasible and
collision free. Planning a path for a CNA to improve the localisation on AUVs can be
seen as a combination of the fields; path planning and acoustic localisation. It involves
finding where to transmit a localisation message from, such that the effect is as great as
possible. The position to achieve this is based on the localisation method used and the
geometrical relationship between transmitter and receiver [28].

1.2.1 Geometry’s Effect on Acoustic Localisation

The geometry between acoustic beacons and an AUV affect the result of the localisation
method [28, 29], such as the distribution of the beacons around the AUV. Other factors
which affect the result are based on noises in the measurements. This can be a product
of erroneous estimation of the sound velocity in water [30]. The estimation of the water
channel is based on multiple factors, some of which are measurable, Conductivity, Tem-
perature and Depth (CTD)[31], and some which are harder to measure such as multi-path.
The ones related to the water channel are hard to control, however the geometrical rela-
tionship between vehicles can be influenced by moving the beacons for transmission at
positions which are calculated to have a better affect.

1.2.2 Path-Planning for Autonomous Maritime Vehicle

Ensuring safe path planning for AUVs and ASVs is critical. If collisions occurs at sea,
this might lead to leaks which with high probability can cause a loss of the vehicle or
cause damage to the embedded electrical systems. Collision free path planning needs to
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take the motion constraints of the vehicle into consideration. The paths also need to be
planned in real-time, or close to, as many vehicles are under-actuated and need to be in
constant motion to maintain control, and can therefore not be idle and wait for a long time
for a planning procedure to finish before executing the path.

1.2.3 Cooperative Navigation

Cooperative navigation in this thesis refers to how a vehicle can adapt its plan based
on others. This can be to follow a vehicle, or to position itself to improve the acoustic
localisation. Such plans need to be planned in real-time and take motion-constraints into
consideration while finding paths that incorporate knowledge about how the geometrical
configurations between the CNA and the AUVs affects the acoustic localisation methods
used.

1.3 Objective of the Thesis

This thesis explores methods on how to solve some of the path planning problems related
to autonomous operations in the maritime environment. While the presented algorithms
developed through the work that lead up to this thesis are path/motion planners, it is
heavily influenced by the effect the geometric relationship between the platforms has on
the localisation of the submerged vehicle. This thesis is therefore a combination of two
fields; acoustic localisation and path planning, the thesis objectives are as follows:

• Review of acoustic-localisation methods: To perform a review and comparison
of the most used range-only localisation methods and filters. As one of the main
goals of this thesis is to use ASVs as navigational beacons, to understand range-
only localisation is essential to establish its potential and limitations. With these
vehicle’s ability to move, they can position themselves in strategic positions which
can achieve a better configuration to improve acoustic localisation.

• Path Planning for Maritime Vehicles: To develop new methods for path planning
it is important to review the field. From this, suggestions on how to achieve reliable,
collision-free path planning methods will be developed.

• AUV-ASV Cooperative and Adaptive Planning: To contribute to the field, novel
suggestions for how to plan vehicles in an adaptive and cooperative approach are
suggested.

• AUV-ASV Cooperative Localisation: A review of the field and suggestions for a
novel path planner for ASVs for cooperative localisation algorithm are proposed.
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This algorithm helps increase the performance of the range-only localisation algo-
rithms.

1.4 Novel Contributions

This section will outline the novelty that this thesis has brought to the field.

1.4.1 Start-to-goal Path Planning

The thesis presents a novel extension for state-to-goal path planning in chapter 4. In this
chapter an extension to Hybrid-State A* (HA*) is presented to handle real-time planning
and path-repair using previously explored paths of the search tree. The benefit of this is
that when a vehicle is operating in an unknown environment and senses an obstacle which
obstructs the current plan it can repair the path by pruning the tree from non-feasible
branches and use the pruned tree as a start of a new search. This reduces the search time
making it suitable for real-time exploration of unknown environments.

1.4.2 Leader-follower

An planning algorithm to solve the leader-follower problem from the followers perspec-
tive is presented in chapter 5. Compared to traditional control techniques this approach
can handle scenarios where the motion capabilities of the vehicles differ such as the fol-
lower being a non-holonomic vehicle with a minimum speed greater than the leader’s
maximum speed and the other way around as well as when they can operate at the same
speed. The same algorithm can also solves multiple of other scenarios such as having
a vehicle loitering around a specific point or following an inspection vehicle to support
it with navigational data. The algorithm can be used on arbitrary vehicles for multiple
dimensions with small modifications — this thesis shows it operating in 2D and 3D.

1.4.3 Cooperative Navigation

A spatio-temporal planner is presented in chapter 6 which can improve the positional
accuracy for acoustic localisation by positing a mobile transponder at waypoints with ge-
ometrical advantages for the receiving vehicle(s). The algorithm can in theory support any
number of vehicles. The novelty for this one is how it combines planning using a priority-
based search tree with stochastic expansion of the tree and a temporal optimiser to find
both from where at when an acoustic message should be transmitted. The algorithm is
adaptable to the computational power of the vehicle using it by changing 2 parameters
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that represent how it should focus on finding closer to optimal path and how much it
should focus on exploration. A sub-problem of this related to selection of when to trans-
mit acoustic messages is presented in section 5.4 which is a small framework which can
reduce the acoustic localisation error without interfering with any objectives the vehicle
in question is performing.

1.5 Thesis Structure

The thesis will first perform a review of the two separate fields which it builds on: AUV
localisation using acoustics and path planning. The work after this follows a trajectory
beginning at planning feasible path to reach a certain position to planning a feasible path to
follow a target. This is extended to select where along a planned path it is most beneficial
to transmit localisation messages from such that a receiving AUV’s positional error is
estimated to be reduced the most. The last technical chapter presents a method to find a
path for a vehicle, to decide when space and time to transmit localisation messages would
be most beneficial for receiving AUVs. How the different chapters relate to each other
can be seen in Fig. 2.

Fig. 2: The thesis chapters and how they relate to each other.

Chapter 2. [AUV Localisation Using Acoustic Communication] Pages: 11 - 51.
This chapter introduces the issue of not having access to GPS underwater, and how using
acoustic communication can be implemented as an alternative method of localisation.
It describes the various configurations and some of the more commonly used methods
used for distance based localisation and how they are affected by different geometrical
relationships.

Chapter 3. [Path planning] Pages: 52 - 72.
This chapter presents some of the most used path planning algorithms along with some
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extensions of them. It presents some work on real-time planning along with how to ensure
collision free paths under motion constraints.

Chapter 4. [Online Kinodynamic Path Planning and Re-planning in 3D] Pages: 73 -
90.
This chapter presents a path planning framework with the goal to reach a goal region
based on guided expansion of a search tree. It takes the motion constraints of the vehicle
as well as environmental limitations into consideration.

Chapter 5. [Vehicle Tracking and Following under Kinodynamic Constraints] Pages:
91 - 110.
This chapter presents a path planner for a follower to autonomously track and follow a
leader. The aim is to plan a feasible path under motion constraints which reduces the
average distance between the leader and follower vehicle over time. It was developed to
especially handle cases where the follower has a minimum speed which is greater than
the leader’s maximum speed.

Chapter 6. [Spatio-temporal Path Planning to Improve Range-only Localisationn]
Pages: 111 - 126.
A spatio-temporal path planner for a support vehicle to find transmission positions, along
with times to transmit acoustic localisation messages from to reduce the uncertainty on
an arbitrary amount of submerged vehicles.

Chapter 7. [Conclusion] Pages: 127 - 130.
This chapter summarises the thesis, reviews the contributions and suggests future work
which is either planned or could be continued from this thesis.
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1.6 Mathematical Notations

The following mathematical notations will be used throughout the remainder of the thesis.

||A−B|| , Euclidean Distance between A and B
|A| , Absolute value of A
R , Real set of numbers
Rn , The real set of numbers in n dimensions

vsound , The speed of sound in water
N (µ, σ) , Gaussian Distribution with mean µ and variance σ

C , Configuration Space
Cfree , Free Configuration Space

q , Configuration i in Configuration Space
ϕ, θ, ψ , roll, pitch, yaw

Tab. 1: Mathematical Notations

10



2
AUV Localisation Using Acoustic

Communication

“Not all those who wander are lost"

- J.R.R Tolkien

Every year AUVs see increasingly more usage. They are gaining higher autonomy and
are collaborating to complete objectives or to map areas in less time [11]. One area that is
unsolved, and will be until new methods are developed, is absolute localisation. Vehicles
with access to GPS have a reliable source to estimate their position within a few meters.
However in GPS-denied environments such as inside buildings, caves and subsurface this
is not an option. For subsurface vehicles this is due to the characteristics of water, which
attenuates high frequency signals such as Radio Frequency (RF). The lack of certainty
in the vehicle’s position brings additional issues regarding georeferencing collected data
with precision. The quality of gathered data loses much of its value if the uncertainty in
its position is too high to enable re-acquisition in a subsequent mission. Too high uncer-
tainty in a vehicle’s position estimate also increases the risk of collisions, redundant data
collection or in the worst case scenario loss of assets. As these are clearly all undesirable
events, the need for reliable localisation is important. On the surface the vehicles have
access to GPS, but as soon as they dive they have to rely on DR until the next update from
an external source. DR is performed by integrating sensor data over time. This is com-
monly based on data from a set of navigational sensors which could include DVL, Inertial
Navigation System (INS), Inertial Measurement Unit (IMU), compass and/or Attitude
and Heading Reference System (AHRS). DVL is used to estimate the sensors velocity
in relation to eg. the bottom using acoustics. The DVL senses velocity in the local X,Y
and Z coordinate frame. By using fusing this data with the data from an IMU and/or
compass to measure the heading of the vehicle an estimation of the vehicle’s position can
be made. Data from sensors contain noise, and as DR performs the integration of this, the
state estimation will include all errors and noise since the last absolute position measure-
ment. The error from DR can usually vary from 1% using expensive modern equipment
to over 20% when inexpensive and limited sensors are used in combination with motion
estimates. For shorter missions the error produced (from vehicles equipped with sensors
resulting in errors in the lower range) might be acceptable. For longer missions an option
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is for the vehicle to surface to gain access to GPS during the mission/objective. However,
every time the vehicle surfaces, the action takes valuable energy and time from the main
objective(s). For certain missions such as objectives in deep water, this may not even be
a viable option as the error would have grown too large once the vehicle has reached its
operating depth again to achieve bottom lock with DVL. It is easy to understand that DR
is far from a long-term solution for all types of missions. Instead more information is
needed to be used jointly with DR. By combining DR with external sources of informa-
tion, the otherwise continuous growth of error could be bounded. One potential approach
is SLAM [32]. SLAM continuously builds a map of its surrounding and uses the map to
localise itself within. It has seen some usage for AUVs [15, 16, 33, 34]. For a vehicle
to localise itself within a map, SLAM is reliant on detecting and re-observing features.
Water is however an environment with many limiting factors for many sensors to be used
properly, including turbidity and low brightness. These factors can limit the possibility
to extract enough features to reliably match them to the ones previously observed in the
map. With too few re-observed features it is hard to make an accurate state estimate in
SLAM. While there are feature-less approaches for SLAM [35] they still wont supply
a solution in too unclear water. Hence using vision [15] laser or sonar [36] based ap-
proaches for SLAM is too unreliable to be considered an absolute navigational solution in
all conditions. This is however not the choice of using either SLAM or acoustic localisa-
tion as they are more commonly used together. Other methods have been examined such
as terrain-aided-navigation[37], but fail to achieve the precision in localisation which is
needed to be able to re-visit a place of interest but could however be good enough for other
scenarios such as mapping of temperature. The precision needed to re-visit an object of
interest differs depending on the objective and the sensor. If side-scan sonars are used,
the precision need is lower than the usage of optical sensors, where the vehicle need to be
up close to get a good image. Another option is to use acoustics as an external reference.
This can be performed by using the distance or the angle towards a source with a known
position. These methods of estimating the vehicle’s position fall into the categories of
trilateration or triangulation. Trilateration is based on estimating a position based on dis-
tance to known positions while triangulation uses angles. These are well used approaches
and have been proven useful since the 1960’s. These approaches show some benefits over
SLAM as they are not reliant on re-observable features nor affected by turbidity and light.
However, they have drawbacks including a reliance on additional infrastructure (such as
multiple vehicles or deployed transponders) and an operational region that is limited to the
range of the acoustic signals from the transponder(s). Nonetheless, acoustic localisation
can be seen as a more general approach for absolute localisation. It can be used to localise
a vehicle which is completely lost, where as relying on a map constructed by the vehicle
can be erroneous nor is it dependent on adequate water conditions. In this section we will
present some of the more common approaches on how to use acoustics for localisation.
It will explore how to improve the localisation on AUVs from the transmitters’ point of
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view. That is, how can a transmitter be placed in relation to the receiver(s) to reduce the
error to the greatest extent.

This chapter will in section 2.2 give a brief introduction to underwater acoustic lo-
calisation, including its advantages and shortcomings. Section 2.1-2.4 will give an intro-
duction to the problem and the necessary components to solve it. In sections 2.5 - 2.7
different localisation methods and filters using acoustics are presented. Section 2.8 will
present a comparison of described localisation methods. Section 2.9 presents the concept
of CNA and 2.10 will summarise this chapter.

2.1 Problem Formulation

By using acoustic localisation, the otherwise continuous growing error from DR can be
bound. In this thesis we will consider this from a distance-based approach. That is, how
to estimate a position based on distances to known positions. To do so we need to know
how to do the the following:

• How to obtain distance measurement from acoustic communication. This will be
discussed in section 2.3.1.

• How to estimate a position based on internal sensor data (DR). This will be dis-
cussed in section 2.4.

To achieve a method of global positioning we need to combine these to solve the
non-linear problem of finding the intersection of circles/spheres based on distance to their
centres. This can be divided into two approaches to obtain a position estimate; the first
one is that we try to solve the trilateration problem. The second one is how to use filters
to get a Bayesian estimate of the position based on the knowledge of the system.

2.1.1 Trilateration

The trilateration problem is to find a position where multiple circles/spheres intersect.
This is, if we have multiple distance measurements we try to find the AUV’s estimated
position X̂ based on distance measurements Z1,..,i to the transmission positions P1,..,i.
Based on this, we want to find the position that is most likely to be the real position of the
robot. To do this we want to find the point closest to the intersection between the distance
measurements to the known positions such as:

X̂ = arg min
X∈Rn

E(X,P, Z) (1)

How equation (1) can be solved will be shown in section 2.5.
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2.1.2 Bayesian Estimation

Another approach is to use Bayesian estimation, to use a filter that updates the position
based on the most likely belief based on the previous state and the measurements. This
can be generalised as estimating the probability of the state x at the current time as a
function of the measurements z over time as:

p(xt|z1:t) (2)

This is commonly solved by recursive filters. Two such ones will be presented in the
following section to solve the localisation problem:

• Extended Kalman Filter, an extension to the Kalman Filter to handle non-linear
measurements (such as distance based). This filter will be described in section 2.6.

• Particle Filter, a Monte Carlo approach which can handle non-linear measurements.
This filter will be described in section 2.7.

2.2 Underwater communication

To be able to communicate with an un-tethered submerged AUV, wireless communication
is needed. There are three methods that can be used for this, acoustics, optical and RF.
The three different mediums are affected differently in water. This section will give some
of the main issues with each, along with other characteristics of communication in water.

RF is on land the most common way of wireless communication. As it is able to
use high frequencies, high bandwidth can be achieved. However, this is a disadvantage
when used underwater as the signal loss in water grows with the frequency, hence, high
bandwidth RF signals are only usable for very short ranges (< 10 metres) [38]. To transmit
over longer ranges (few kilometres), low frequencies are needed (3-30kHz have been
used) which have a low bandwidth and require large equipment and high power [38].

Optical communication is another method to communicate with high bandwidth. Wa-
ter has a lower absorption at the wave length of ultra-violet and the visible spectrum for
humans as can be seen in Fig. 3. This makes it an alternative approach for high-bandwidth
communication underwater. However, it is dependent on line of sight, something that is
highly affected by the water quality. Another issue is the light from the sun, which creates
light waves in the same spectrum as the optical communication and hence will add noise.
If there is too much external light, optical communication might not be usable. This can
limit the method to not being able to be used while the sun is shining.

The last method of communication is acoustics. Compared to the previous methods it
consumes a lot of power in regards to the amount of data transmitted as it needs to create

14



2.2. Underwater communication

Fig. 3: There is a spectrum for light with lower absorption coefficient which enables the
usage of optical communication underwater. Image-credit [39].

mechanical waves. However, it is low frequency (<300Khz, commonly 12k-48kHz in
commercial systems) which means it is not absorbed as much as the other methods making
it able to be used over greater distances (10’s of kilometres with powerful transducers, <10
kilometres with commercial systems for AUVs).

Based on the drawbacks of RF and optical communication, acoustic is the dominant
means of communication with submerged platforms. The propagation of acoustic signals
has increasing attenuation with frequency [30], hence long range communication needs
to be low bandwidth. Acoustic signals are heavily affected by multi-path propagation
[40] and has a low propagation speed which varies with the acoustic velocity profile,
which CTD sensors can help to estimate [41]. How the acoustic velocity is affected by
the depth can be seen in Fig. 5. The typical properties and characteristics for acoustic
communication are described below.

• Low bandwidth
The path loss of a signal in water is dependent on the frequency and the distance
travelled [30]. The strength of the signal decreases by distance due to the spherical
spread of the acoustics and the attenuation. And the higher the frequency, the higher
the attenuation in water. Hence, to transmit for long range either much energy is
needed an/or low bandwidth is required.

• Multipath Multipath is caused by signal reflection (from bottom, surface or an
object) and refraction (variances of the propagation speed within the water, see Fig.
5). An example of the various paths the acoustic signal can take can be seen in Fig.
4. This can cause the same signal to arrive at multiple times, which can lead to the
information in the signal being corrupted by collisions.

• Low Propagation Speed - High Latency:
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Fig. 4: Multipath is an issue for acoustic signals. The same signal can be received at
multiple times due to different paths.

Speed of sound in water is of many magnitudes lower than the speed of electromag-
netic waves. As such the delay or latency in communication can be in the order of
seconds over long distances. The speed varies with CTD as can be seen in Fig. 5.
From [31], equation (3) is used to calculate the speed of sound in water where T is
the Temperature in centigrade, C Conductivity which is based on the salinity (PPT)
and D is the Depth in metres.

Vsound = 1449.2+4.6∗T−0.055∗T 2+0.00029∗T 3+(1.34−0.01∗T )(C−35)+0.016∗D
(3)

Fig. 5: Speed of sound in water is dependent on water density and compressibility (Con-
ductivity, Temperature and Depth). Image-credit [31]

• Thermocline layer:
In the oceans there is a certain depth where the sound velocity of acoustic signals
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rapidly changes. This is called the thermocline layer and will create a shadow
zone where the acoustic signals cannot enter due to the layer acting as a reflector,
which is a part of the multipath problem. Submarines during covert missions on the
other hand, use this to their advantage to remain unnoticed from sensors above the
thermocline layer. For ASV-AUV missions, it does however remove or reduce the
possibility of how to communicate with deep operation AUVs. A representation of
the effect can be seen in Fig. 6.

Fig. 6: The negative sound speed gradient of the thermocline layer creates a shadow zone
below it, making it impossible to reach with acoustic signals in certain areas. Image-credit
[42]

• Noise:
Noise comes in many forms in the ocean including turbulence, surface motions and
thermal as well as from the vehicle it self. Surface motion (rain, other vehicles,
wind causing waves etc), is the major source of noise for the frequencies 100 Hz -
100 kHz (which are the operating frequencies of most acoustic modems).

As stated, the longer the distance to transmit, the lower the data rate and higher the
energy is needed. Transmitting shorter distances with multi-hop and at higher data rate
can in many cases be both faster and require lower energy consumption [40].

2.3 Localisation using Acoustic Communication

As mentioned, DR is a method with continuously growing error and uncertainty. This
error can be bounded by using external references. One type of external reference can be
obtained from using acoustic signals/communication with transponders with known loca-
tions. In the early stages of acoustic localisation for underwater vehicles, Long Baseline
(LBL) was the primary method. LBL is based on measuring distances or Time Difference
of Arrival[43] to widely spread transponders, as seen in Fig. 7.
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Fig. 7: Long Baseline can be used to measure the distance to multiple transponders with
known locations. This can be used to calculate the AUV’s position.

LBL systems have been used since the 1960’s and are still in use today. It has achieved
sub-centimetre precision in a small confined environment (7.75m diameter, 4.25m deep
tank) using a high-frequency (300kHz) LBL system [44] which achieved an update rate
of 5Hz. However, due to the rapid attenuation of high-frequencies in water, this is not
applicable to many open sea operations or for larger surveys. Instead lower frequencies
(12-48kHz) have been used to allow longer range [45]. The trade-off for using lower
frequencies to achieve a longer range is less precision and longer period between updates.
A 12kHz system presented by Hunt et al. [45] achieves a precision of 10m at a 2km range
every 20 seconds. LBL systems are conventionally moored to the sea-floor, making it a
time consuming task to deploy and recover the transponders. As the transponders are in
a static position underwater they need to be localised before they are able to be used as a
source for localisation [46, 47]. This means that time is also needed for calibration of the
system.

An alternative approach to moored transponders for LBL is to use GPS Intelligent
buoys (GIBs). Using buoys with GPS access reduces the time for deployment and re-
moves the need for localisation of the transponders before usage [48, 49].

Another method is the usage of USBL or Short Baseline (SBL), which consists of
multiple hydrophones to measure the Time Difference of Arrival (TDoA) and phase shift
in the signal between the hydrophones to calculate the slant and bearing angle of the
acoustic signal [50]. The response from the USBL equipped platform as an acoustic
message can then help the AUV to localise itself by combining the USBL measurement
with DR [51, 52]. Cooperative navigation is a field that is getting more attention recently
which makes use of the concept of Moving Long Baseline (MLBL), which instead of
moored beacons or GIBs uses multiple vehicles instead. This approach brings multiple
benefits such as ease of deployment and eliminates the need to manually deploy, localise
and retrieve static beacons. The operating areas for the AUVs are no longer limited by
the communication range of the static beacons, as the mobile ones can follow the AUVs
[20]. An alternative to using multiple transponders to perform LBL either though static
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2.3. Localisation using Acoustic Communication

or moving transponders is single beacon localisation. This method type of configuration
either uses delayed state forms for localisation methods or filters. It reduces the number
of transponders needed for localisation, but at the cost of potentially lower precision due
to a shorter baseline between transmissions. A summary of some of the benefits and
drawbacks of various configuration can be found in table 2.
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Method Pros Cons Examples
LBL (Moored) High precision Limited operational region, Time consuming to

deploy, retrieve and calibrate
[53, 54]

LBL (GIB) Faster deployment and no calibration needed Limited operational region, manual deployment [49, 55]
MLBL Mobile Requires multiple vehicles [20, 21, 56]
Single beacon Cheaper, can be mobile Lower precision [22, 23, 57, 58]
USBL/SBL Can be mobile Synchronisation with position and orientation

of vehicle equipped with the USBL/SBL, ex-
pensive, not as high precision as LBL

[59, 60]

Tab. 2: Benefits and drawbacks from different transponder configurations. The benefit of having a mobile beacon is that it overcomes the shortcoming in
which the operational area is the region to where the transponders are deployed.
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2.3. Localisation using Acoustic Communication

2.3.1 Distance measurement

Using the distance acoustic signals(s) have travelled and the origin of the signal(s) can be
used to localise a robot. To do this we need to be able to measure the distance. This can
be done in two ways; One-Way-Travel-Time and Two-Way-Travel-Time

2.3.1.1 Two-Way-Travel-Time

The easiest form to measure distance between a robot and another beacon/transponder is
by using an exchange of messages. This is called Two-Way-Travel-Time (TWTT). It is
based on transmitting a signal at a known time, and waiting for a response as seen in Fig.
8.

Fig. 8: A message exchange between platformA1 andA2 can be used to synchroniseA1’s
clock in respect to A2 or for A1 to measure distance between them.

By using the time-stamps (T1,2,3,4) seen in Fig. 8, equation (4) can be used to calculate
the round-trip time of the message. This time can then be used with a the sound velocity
profile to calculate a range as in equation (5).

t = (T4 − T1)− (T3 − T2) (4) dTWTT (t) =
t

2
∗ vsound (5)

2.3.1.2 One-Way-Travel-Time

The other method to measure time is by using a single message instead of an exchange.
This is referred to as One-Way-Travel-Time (OWTT). Instead of using all the time-stamps
(T1,2,3,4) as seen in Fig. 8, only the ones from one message are needed. If vehicle A2

receives a message at time T2, transmitted by vehicle A1 at time T1, equation (6) can
be used. However, there is one pre-condition for this equation; A2 needs to be able to
convert T1 to A2’s time-frame. This means that the vehicles’ transmitter/receiver need to
be synchronised in time [61].

dOWTT = (T2 − T1) ∗ vs (6)

The time-synchronisation process can either be performed on the surface by (as an
example) using the time from GPS or submerged using a synchronisation protocol. This
could be performed by Network Time Protocol (NTP). Performing a time-synchronisation
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2.3. Localisation using Acoustic Communication

requires a message exchange as in Fig. 8. To calculate the offset of A2 in relation to A1

equation (7) can be used.

Offset =
(T2 − T1) + (T3 − T4)

2
(7)

A drawback of OWTT is the requirement of synchronised clocks as well as the need to
periodically re-synchronise the clocks due to drift (although atomic clocks can provide an
accurate time-synchronisation over a long time [62, 63]). An additional benefit of having
synchronised clocks is that one vehicle can support an arbitrary number of vehicles with a
single message, instead of a message exchange with each vehicle. As the vehicles do not
need to exchange message to estimate the range between them, it can be used as a silent
positing method for the duration the clocks are synchronised. Another silent positioning
approach is TDoA which measures uses the time difference of multiple received signals
from know origins. However, it relies on either multiple transponders or the receiver being
in a static position.

2.3.1.3 TWTT-OWTT Comparison

A comparison between OWTT and TWTT, as in Fig. 9, shows a slight offset between the
methods which can be caused by clock-drift and various filter- and hardware-delays.

(a) (b)

Fig. 9: Experimental comparison between distance measured from OWTT and TWTT.
The experiment was conducted using a Sonobot equipped with EvoLogics modem, com-
municating with a static positioned modem in a small (∼ 50 ∗ 150 meters) and shallow
(depth < 1m) fresh water loch (Scottish lake) at Heriot-Watt University.

Almedia et al. have investigated this and further improved equation (4) and (6) by
measuring and including the delays caused by electronics filter (tf ), processing times (tp)
and other design specific delays (td) [64]. The filter compensated equations for TWTT
and OWTT can be seen in equation (10) and (11), which are based on the actual time
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measured by the system (tACS) from equation (9). In their study they achieve a result of
a RMS distance error below one metre to static buoys.

Fig. 10: Two-Way-Travel-Time with added filter, processing and other design delays.
T1,2,3,4 are the same as in Figure 8.

ToF = (T4 − T1)− (T3 − T2) (8) tACS =
ToF

2
+ tf + (tp + td) +

ToF

2
+ tf

(9)

dTWTTf =
tACS − 2tf − (tp + td)

2
∗ vs

(10)

dOWTTf = (tACS − tf ) ∗ vs (11)

2.4 Vehicle Motion Model

To improve the estimations of the localisation of a vehicle over time a motion model
representing the kinematics of the system can be used.

For the localisation problem of this thesis, rigid body underwater robots are considered
such as a torpedo-shaped AUV. These platforms are usually equipped with a pressure
sensor which can give quite accurate readings on the vehicles’ depth (error within a few
centimetres). Therefore, localisation can be considered to be done in 2D (Northings-
Eastings, latitude-longitude or x-y) instead of 3D as the uncertainty in depth can be seen as
bounded. These vehicles are most likely equipped with sensors to measure the orientation
(IMU, magnetometer, compass etc.) as well as DVL to estimate velocity. As we consider
the localisation problem in 2D we get the following data from the sensors: velocity(v)
and yaw (θ). We can see the representation of these motion estimates in Fig. 11. Using
these vehicle estimates, a first-order motion model of the vehicle can be used to describe
the kinematics of the system. This can be seen in equation (12). This can be used to
update the estimated position (q) from DR (q̇) using the the delta time (∆t) in equation
(13). A noise value is added as (N ) to describe the noise from the sensors. For the work
considered in this chapter we only require a simple kinematic expression of the motion
model, for more in-depth descriptions there are multiple robotics books which covers this
[65].
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2.5. Localisation using Nonlinear Least Squares

q̇ =

[
v ∗ cos(θ)
v ∗ sin(θ)

]
+N (12)

q = q + ∆t ∗ q̇ (13)

The velocity and direction can be seen as in Fig. 11. The direction and velocity of the
movement does not necessarily have to be along the vehicle, as external forces (currents
etc) can affect the system. v and vθ should be seen as the velocity as well as the direction
of travel and not the heading of the vehicle.

Fig. 11: The 2D kinematics from equation (12) are used to estimate a vehicle’s movement
from sensor data.

2.5 Localisation using Nonlinear Least Squares

If the received distance measurements, without noise are visualised as spheres in R3 or
circles in R2, as seen in Fig. 12, the position of the receiver should most likely be in
the intersection of the perimeter of these circles. This is the argument behind the first
method for range-only localisation presented in this chapter. The method is based on
maximum likelihood estimators, by solving the Nonlinear Least Squares problem. The
solution of the problem is to find an estimate state where the distance to the observed
landmarks are as close to the observed measurements (distances from acoustic messages)
as possible, as this would correspond to the intersection of said geometrical shapes. This
can be formulated as equation (14). The Nonlinear Least Squares (NLS) problem can be
described as trying to fit m observation to a non-linear model of n parameters. To find
a unique solution m needs to be larger than n. For the range-only localisation problem,
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2.5. Localisation using Nonlinear Least Squares

observations are the distances measured to the landmarks and the model is the estimation
of the position (North-East/X-Y in R2). The reasoning being that we need m to be larger
than n to find a unique solution, which can be seen in Fig. 12c. Another criteria to find a
unique solution is that m > n observations need to be linearly independent.

(a) Infinity solutions (b) Two solutions

(c) One solution

Fig. 12: NLS for range-only localisation needs more measurements then parameters to
find a unique solution. In the case of range-only localisation for finding a position in R2,
3 linearly independent measurements are required.

As mentioned, an AUV can be considered to be equipped with a pressure sensor. As
such it is already localised in one dimension, which reduces the problem from 3D to 2D.
To solve this for a unique solution, the vehicle needs to store measurements until a third
one arrives. However, as measurements are received at different times, this has to be taken
into account, as NLS is based on solving the problem as if all observations were received
at the same instant in time. This can be performed by updating the landmarks’ position
along with the DR of the vehicle since the observation was made, as from the kinematic
model (13). An example of how this can be performed can be seen in Fig. 13.

From a scenario such as Fig. 13, where the method uses the last 3 measurements, we
get one landmark (P ) and 2 virtual landmarks (P̃ ), along with their measured distances,
resulting in a configuration such as Fig. 14 which can be used to find the estimated
position (X∗) based on the range observation to the landmarks.

From Fig. 14, let X ∈ Rn be the current estimated position of the vehicle, where n is
the dimension. As depth is considered known, the problem to solve is reduced from R3 ⇒
R2. P is the set of landmarks denoted as Pi ∈ Rn where i ∈ {1, .., t}. Z is the correspond-
ing distance measurements (Z = [Z1, .., Zt]

T ) derived from the Time of Flight (ToF) and
Ri is the estimated distance between receiver’s estimated position and the landmark Pi as

||X−Pi||, which gives us the vector R = r(X) =
[
||X − P1|| . . ||X − Pm||

]T
. The

squared difference between estimates and measurements is then formulated as equation
(14), where E(X) is the cost function of the squared sum of the difference between the
estimated distance at position X’s distance to the landmarks and the measured distance
from OWTT or TWTT.
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2.5. Localisation using Nonlinear Least Squares

(a) The landmarks’ position (P ) and
the receiving platform’s position (X)
over time.

(b) The landmarks’ position are
moved according to the motion (M )
of the platform since the time of re-
ception.

Fig. 13: By compensating the movement of the landmarks (P , assumed to be localised of
surface), the receiving platform can solve the NLS problem as if all signals were received
simultaneously using virtual landmarks (P̃i for i ∈ {t − n, .., t}, where n is the number
of landmarks used to solve the NLS problem.

Fig. 14: An AUV can localise itself using ranges to multiple landmarks. Z{1,2,3} is the
measured distance. R{1,2,3} is the estimated distance from the estimated position X to the
landmarks P{1,2,3}

E(X) =
1

2

m∑
i=1

(||X − Pi|| − Zi)2 =
1

2
||r(X)− Z||2 (14)

Hence, to find a position X which minimises equation (14) is to find the most likely
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position of the receiving vehicle. We state this as:

X∗ = arg min
X∈Rn

E(X,P, Z) (15)

One method could be to generate a cost map of the potential X , such as in Fig. 15.
In such a map, selecting the position with the lowest cost is straightforward, which is
the position that minimises equation (15). However, calculating such a map involves
calculating the cost in every position in the considered region, which is computationally
expensive and the precision of the solution is dependant on the resolution of the map.
Less computationally expensive approaches to solve the NLS problem can be performed
by iterative minimisation or closed form solutions. However, in [55], Alcocer states that
closed form solutions are not finding the optimal solution. Various iterative minimisation
methods have been applied successfully in multiple cases including [55, 66, 67]. These
approaches are used to find a minimum based on Gradient Descent (GD). There exists
multiple approaches on how to use GD to solve such a problem, which will be shown in
the next section.

Fig. 15: Map of cost from equation (14) in an example without any noise in the range
measurements (represented by the white circles).
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2.5.1 Solving the NLS Problem Using Iterative Methods

Consider a scenario, such as in Fig. 16a, where a set of m ranging measurements along
with the m corresponding landmarks, with known positions, are used for localisation.
In the figure, a cost map has been created using (14). If the gradient at any point can be
calculated, moving towards the steepest decent should result in obtaining a lower cost. By
repeatedly doing this until a minimum has been found a possible solution can be achieved.
To do this we need the equation of the gradient in a given point x̂ .

∆x̂ =
∂E

∂X
=

∂

∂X
(
1

2
||r(X)− Z||2) (16)

Equation (16) gives equation (17).

∆x̂ =
m∑
i=1

(r̂i)(x̂− ri) ∗ (
x̂k − xi
||x̂k − xi||

) (17)

To verify this, the negative gradients of Fig. 16a are plotted in Fig. 16b. With the
equation to calculate the gradient of an arbitrary point we can now apply (17) iteratively
from the initial position X0, then moving along the negative gradient with a length depen-
dent on λ, as in (18), resulting in a new position X1 which should have a lower cost. This
is performed until a termination condition is fulfilled. The termination condition can be
based on various factors e.g. j iterations or when the magnitude of ∆x̂ is below a thresh-
old, which would be either the global minimum, a local minimum or a saddle point. In
Fig. 17a it can be seen how different initialX0 reaches either a local or a global minimum.

Xi+1 = Xi − λ ∗∆x̂ (18)

The step size or learning rate, λ dictates how long Xi should move along the steepest
decent. A large λ could make method converge toward a solution faster. λ should be in the
range ]0, 1[, as λ < 0 would go in opposite direction and λ ≥ 1 could end up overshooting
the goal and oscillating. A comparison of different λ’s effect is shown in section 2.5.1.2.

An issue for gradient descent is that it cannot by itself distinguish between local min-
imum and global, as seen in Fig. 17a. To overcome this, Monte-Carlo Gradient De-
scent (MC GD) methods can be applied to instead of using a single initial point X0, mul-
tiple initial points as Xj0,..,n can be used for the GD. Solving the gradient descent for each
instance and selecting the one which results in the lower cost could reduce the chance
of selecting a local instead of global minimum as the solution. An example of randomly
chosen Xj0 for j ∈ {0, .., 6} can be seen in Fig. 17 where in Fig. 17b through evaluating
the cost, it is easy to distinguish between a local and a global minimum where Xj for
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(a) Cost map (b) Map of the negative gradients

Fig. 16: Curvature of the cost function (14) along with the direction of the gradient from
(17). The initial P will effect the gradient descent as there is a local minimum.

j ∈ {1, 2, 3, 6} all result in the global minimum and the correct solution.

2.5.1.1 Variations of Gradient Descent

There exist many variations of GD, some which are used to escape local minimum. Ex-
amples of these are Stochastic Gradient Descent (SGD) and batch GD. In SGD, instead
of using the whole set of observations in (17) a single random observation from the set of
observations are used. A new random observation is selected at each iteration. Batch GD
works in a similar fashion but instead of using a single observation a set of observations
is used. However, for a problem with few observations it does not guarantee escaping the
local minimum due to the high probability of re-selecting an observation which moves
the examined point towards the local minimum. To speed up the convergence, GD with
momentum can be used (Momentum Gradient Descent (MGD)). MGD make use of a
weighted history of the GD to gain momentum. An example using the previous gradient
can be seen in (19) where λmr is the momentum factor/rate.

Xi+1 = Xi − λ ∗∆x̂i − λmr ∗∆x̂i−1 (19)

A comparison of different step size (λ) with different momentum factors (λmr) can be
seen in Fig. 18b. SGD and MGD can be combined to create a stochastic approach with
momentum [68]. Conjugate GD was used to solve the NLS problem in [66].

2.5.1.2 Comparison of Iterative Methods

We have discussed various approaches to solve the NLS problem using GD. This section
will compare them in the terms of how fast they converge towards the solution. This will
be affected both by the methods as well as the learning rate or step size along with the
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(a)

(b)

Fig. 17: Using multiple initial starting points and solving the gradient descent and choos-
ing the solution with the lower cost is a stochastic/Monte Carlo approach to reduce the
chances of selecting a local minimum. λ = 0.01

momentum rate (if used). In Fig. 18 different approaches, learning rates and momentum
rates are compared in the same scenario shown in Fig. 17.
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(a) MGD with a momentum rate of 0.1 compared to GD and SGD.

(b) MGDs with different momentum rates (value shown within parenthesis) are compared.

Fig. 18: The number of iterations until a solution (either when the magnitude of the
gradient is ≤ 10−5 or 104 iterations have passed) is considered to be found for different
versions of GD under different learning rates. The scenario is the same as shown in Fig.
17 with an initial point of x=200, y=800.
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2.5.2 Landmark geometry and precision dilution

The error in localisation from NLS is based on the landmarks’ geometrical configuration
and the noise in the measured distance [28]. If we assume an equal Gaussian distribution
of the noise for the distance measurement for each signal we can visualise the region of
possible solutions as in Fig. 19. The optimal configuration of the landmarks in respect to
the receiver is hence if the landmarks are uniformly spread in angles around the receiver
[28, 69, 70].

(a)
(b)

Fig. 19: The area region of intersection (possible solutions) between the distance mea-
surements to the landmarks is dependent on the geometrical configuration between the
receiver and the landmarks.

An approach to calculate how efficient a set of landmarks is can be done through
Cramér-Rao Lower Bound (CRLB) or Fisher Information Matrix (FIM), which are the
inverse of each other, hence maximising the determinant of the FIM is equal to minimising
it for the CRLB when it comes to optimal transmitter placement in relation to the receiver
[71]. The same definition is used by Martinez et al. to place sensors in optimal positions
based on the FIM, to track a target [69]. The FIM is also used by Glotzbach et al. [72] to
position GIBs in optimal configurations. From the paper (20) is derived to calculate the
information value. In the equation δi,j is the angle towards the landmarks in respect to the
target position and σ is the noise.

Lq0 =
1

2σ2

n∑
i,j=1

sin(δi − δj) (20)

What is of interest is that the maximisation of information value is not dependant on
range, but rather solely on the incoming angles. Applying (20) to every cell in the discrete
grid shown in the different scenarios in Fig. 20a, 20d and 20g, the positions where the
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location of the target’s uncertainty would be decreased the most are the higher values
(darker red). What can be clearly noted in Fig. 20a is that (20) does not distinguish
between a δ = ω and δ = ω±π. This can also be seen in Fig. 21, where the green and the
red solid lines are two current transmissions’ angles in relationship to the target. When
finding the angle of a third transmitter which maximises the FIM as in (20), it can be seen
that two solutions are found.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 20: Various distributions of landmarks in the different rows (white stars). The left
column (a, d, g) shows the determinant of the FIM (20) in every cell. The middle column
(b, e, h) shows the solution from solving the NLS problem using MGD when the distance
measurement is N (True_distance, 2.5). The result is the average of 30 Monte Carlo
simulations for every 10:th cell. The right column (c, f, i) show the resulting error if the
distance measurements are True_distance+ 10 metres using MGD.
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Fig. 21: The angle of current landmarks are shown as the solid lines in (a) in respect to
the receiver. To find the optimal angle for placement of a third landmark, two solutions
are found which maximises the determinant of the FIM as from (20). The two solutions
are exactly π radians in difference.

2.6 Extended Kalman Filter

The Kalman Filter (KF) [73] is an optimal filter for linear processes with Gaussian noise
which has been around since the 1960’s. It is an optimal linear filter when the model
is linear, the noise is Gaussian and the noise levels are known. This is clearly not the
case for range-only localisation as it is nonlinear. However, there are extensions to KF
to handle these non-linearities such as Extended Kalman Filter and Unscented Kalman
Filter [74] among many others. While NLS requires a set of observations, these filters can
use stochastic models to incorporate every measurement. The core of the filters is a two
step procedure. A prediction step and an update step. The filters estimate uncertainty in
the form of a covariance matrix.

The Extended Kalman Filter (EKF) has been widely used and has proven effective in
the underwater environment [66, 19, 75]. Just as the KF, it is based on a prediction and
an update step. The prediction step predicts the new state of the vehicle and associated
uncertainty based on its current state and a motion model of the vehicle (such as described
in section 2.4). The update step combines the new measurements with the predicted state
to produce a new state estimate. The combination is done through the Kalman gain and
takes into account the uncertainty in the predicted state and the measurement noise. When
the relationships between measurements and state and/or the motion model are nonlinear,
the Extended version of the Kalman Filter is used by linearising the equations around
their current estimate using Jacobians.
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Fig. 22: The covariance matrix from the EKF are represented as ellipses. To the left,
the covariance grows continuously during the prediction steps. To the right, the vehicle
receives a distance measurement and updates its covariance matrix.

2.6.1 Prediction Step

The prediction step moves the state estimate according to the first-order motion model
described in equation (12). This predicts the state based on the sensor reading as in
equation (21).

Predicted state estimate x̂i|i−1 = f(x̂i−1|i−1,uk) (21)

Predicted covariance estimate Pi|i−1 = Pi−1|i−1 + FiQFT
i (22)

The Jacobian for the state transition (25) is taken into account to update the covariance
matrix (22) based on the system noise Q during the prediction step. The implementation
using the Jacobian of the first-order motion model used for predication (equation (12))
can be seen in (26).

An example of how the covariance matrix grows continuously between updates during
a constant motion can be seen to the left in Fig. 22. The rate of the growth is dependent
on the noise matrix Q.

Fi =
∂f

∂x

∣∣∣∣
x̂i−1|i−1,uk

(25)
Fi =

[
∆t ∗ sin(Θ) ∆t ∗ v ∗ cos(Θ)

∆t ∗ cos(Θ) −∆t ∗ v ∗ sin(Θ)

]
(26)

2.6.2 Update Step

The update step is used when a measurement from an external source is received. This
step performs a weighted average of the current estimate and the measurement. This is
performed by calculating the Kalman gain (29). In the case of range-only localisation
the update step is performed when an acoustic message is received. The message needs
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to contain data representing the origin of the message (η) and information able to be
converted to a distance (zi).

Innovation or measurement residual ỹi = zi − h(x̂i|i−1, η) (27)

Innovation (or residual) covariance Si = HiPi−1|i−1HT
i + Ri (28)

Kalman gain Ki = Pi−1|i−1HT
i S−1 (29)

Updated state estimate x̂i|i = x̂i|i−1Kiỹi (30)

Updated covariance estimate Pi|i = (I− KiHi)Pi|i−1 (31)

In (27) and (35) h(x̂i|i−1, η) is the distance between the estimated position and the origin
according to the received message.

The Jacobian for the observation Hi can be seen in (34), and the implementation spe-
cific to a 2D range-only filter in (35), where η is the location from the observed landmark
(included in the acoustic message).

Hi =
∂h

∂x

∣∣∣∣
x̂i|i−1

(34) Hi =


(ηx − x̂i−1|i−1x

)

(x̂i|i−1, η)
(ηy − x̂i−1|i−1y

)

(x̂i|i−1, η)


T

(35)

An example of how the covariance matrix is reduced when a distance measurement is
received from a transponder can be seen to the right in Fig. 22.

2.6.3 Landmark geometry’s effect on uncertainty

To visualise the uncertainty, the covariance matrix can be represented as an ellipse. For
this thesis it will give two benefits: 1) Better intuition on how the filter is affected by a
range measurement to a landmark. 2) The angle of the semi-major axis of uncertainty.
Knowing the angle of the semi-major axis of uncertainty has great benefits when aiming
to reduce the uncertainty. Just as with NLS we look at the usage of EKF in R2. This means
that the we are interested in the 2×2 x-y part of the covariance matrix as in equation (36).

Pi(k) =

[
σ2
x σxσy

σxσy σ2
y

]
(36)

The geometrical relationship between the landmark’s position (as included in the
acoustic message) and the estimated position of the receiving platforms affect the up-
date covariance matrix. The reduction of uncertainty is in the radial direction between
transmission and receiver’s estimated position [76]. However, as a result the uncertainty
in the tangential direction is not affected. As such, the reduction is reduced by the most if
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the position of a transmission is along the semi-major axis of uncertainty [29, 57]. This is
illustrated in Fig. 23, where it can be seen how different geometric configurations affect
the uncertainty.

Fig. 23: The EKF’s covariance matrix before (green ellipse) and after (blue ellipse) an
update has been received over acoustic communication. The reduction is an effect of the
geometrical configuration of the landmark and the receiver. The closer to the receiver’s
semi-major axis of uncertainty the message is transmitted from the more the area of un-
certainty is reduced.

2.7 Particle Filter

The Particle Filter [77] is based on Monte Carlo techniques [78], which are designed to
simulate the measured parameters as many instances. While EKF approximates its state
around one point and Unscented Kalman Filter (UKF) usually around 2∗n+1 (for Rn) the
Particle Filter (PF) consists of an arbitrary amount of particles. Each particle represents
a possible state (δ) with an assigned weight (ω). The weight represents how well that
particle corresponds to a measurement. Much like the Kalman family, PF is based on a
prediction and update step but with an added re-sampling step. It is a powerful filter, able
to estimate various parameters. However, the amount of particles needed grows expo-
nentially with the dimension/number of parameters. The performance and computational
load is tightly linked to the amount of particles: the more particles the higher likelihood
to represent the true position correctly, however more computations are needed in each
step of the filter making it computationally more expensive.

2.7.1 Prediction Step

The particles are moved as a specified model with a control input, using (12) with a
Gaussian noise to update each particle Pi as in (37). This noise (ω) is necessary to make
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the approach probabilistic instead of deterministic, as the particles would all otherwise
converge to the same estimate. In (37), v is the measured velocity and Θ the heading.

[
PiX
PiY

]
=

[
1 0 ∆t 0

0 1 0 ∆t

]
∗


Pi−X
Pi−Y

cos(N (Θ, σ2
Θ)) ∗ N (v, σ2

v)

sin(N (Θ, σ2
Θ)) ∗ N (v, σ2

v)

 (37)

Fig. 24: The prediction step of PF moves the particles according to (37). In this scenario
the distribution can be seen after 100 seconds, with a σΘ = 0.1 and σv = 0.05 during a
movement at 0.5m/s.

2.7.2 Update Step

The update step of the filter is applied when an acoustic localisation message is received.
This step updates the weight of each particle to represent their likelihood to the real state
according to a model. Bayes theorem is used to assign the weight of each particle as in
equation (38).

P (x|z) =
P (z|x)P (x)

P (z)
=
likelihood× prior
normalisation

(38)

For range-only localisation, the update step is to assign the weights as in (38) is based on
how well the measurement matches the estimate. This is done by a Probability Density
Function (PDF). The weights are then normalised so that (41) holds.

2.7.3 Re-sample Step

After the update step has taken place, the set of particles are evaluated to see if they
need to be re-sampled. This is to re-sample particles with low possibility to represent the
system.
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N̂eff =
1∑N
i=1 ω

2
i

(39)

If N̂eff falls under a threshold (conventionally< N/2), a subset of the particles are re-
sampled. The re-sampled particles are randomly sampled among the remaining particles
with a bias towards the ones with low probability (weights). The particles that have been
selected for re-sampling are then re-sampled as a copy of one which was not selected for
re-sampling (with a bias towards the ones with high probability (weight)).

Fig. 25: The update step of the PF where the noise estimate of the signal is 0.5 metres.
Following the update, the particles with a low weight will be deleted and re-sampled as a
copy of a particle with a high weight. The weight is dependent on how well the particles
fit the measurement, which is greater the closer to the circumference of the circle with the
measured distance with its centre at the landmark.

2.7.4 State estimation:

The state estimation is based on a weighted average from all the particles as in (40).
For range-only localisation this might cause bad initial estimates based on the shape and
spread of the particles. This can be seen in Fig. 25 where after the first update (and
re-sample) step t gives an estimate which does not necessarily represent the true posi-
tion well. However, after a second one from another geometrical configuration, the state
estimate will represent the true position better.

X =
1

N

N∑
i=1

ωiδi (40)

N∑
i=1

ωi = 1 (41)
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2.7.5 Landmark geometry’s effect on uncertainty

The update and re-sampling step for the described PF results in keeping the particles that
lay close to the perimeter of the circle with the measured radius (from ToF) with the
centre at the landmark. As such the shape of the resulting particles will be dependant
on the distance to the landmark (and its position) and the spread of the particles. The
further away the more of a straight line the particles will result in, and the closer it is,
the more curvature the shape of the particles will have. A curvature shaped spread results
in a poorer estimate, as it will have a greater variance in two dimension compared to
a line, which might have a high variance in the perpendicular direction to the vector
between the estimates and the landmark but low variance in the other dimension. The
lower the variance, the more the particles should represent the true state. As such, to lower
the variance, and hence in theory improve the state estimate, the observed landmarks
should preferably vary geometrically in a way which reduces the variance the greatest.
Assuming that the particle spread is mainly tangential to the angle towards the landmark,
it is intuitive that the next transmission should have a 90◦ difference to reduce the spread of
the particels to the greatest extent. Fig. 26 shows the effects from different geometrically
distributed landmarks on the same particles. The previous observed landmark was in the
negative north direction (as in Fig. 25). Therefore in theory a landmark observed from
either positive or negative in the straight east should reduce the variance the greatest.
From Fig. 26 it can be seen that this statement holds.

While the state estimation after an update for PF looks different to the covariance
matrix in the filter Kalman filter, the angle (of the cluster of pixels) and the variance of
the particles are similar to the ellipse of the covariance matrix. The geometry between
landmark and the receiving AUV effects the density of the re-sampled particles after an
update in a similar fashion as EKF. As the particles become more dense, the observation
is to the line upon which one would consider the major axis of uncertainty. This can be
seen in Fig. 26. In the lower right subfigure in this figure, it can be seen that sequential
updates from the same angle reduces the density, and hence the uncertainty, by the least,
while a 90◦ angle difference has the most benefits.
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2.7. Particle Filter

Fig. 26: The density of the particles after an update and re-sampling step is dependant on
the particles before the update and the geometry with the landmark. The particles in this
scenario are from Fig. 25, after they have travelled 40 more seconds. Var is the variance
in x and y compared to the mean of the estimation of the state from the particles.
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2.8 Localisation Filters and Methods Comparison

This chapter has presented three commonly used methods and filters used for localisa-
tion. They have all seen some usage in the underwater domain for range-only localisation
and have their own benefits and drawbacks when it comes to precision and computational
load. In this section the different methods are compared using both simulated data and
data collected by AUV Sirius. We look at this from different configurations of static
transponders with different types of error in the distance measurement and see how this
is affected by how the number of transponders create different geometrical relationships
over time.

Previous comparisons of different methods for range-only localisation methods for
the maritime environment have been performed in:

• Fallon et al. compares NLS (online and post processed), EKF and PF. Their results
and conclusion regarding this is that NLS performs the best, while EKF the worst.
The same conclusion was obtained in [66] where a conjugate GD method was used
for the NLS problem.

• In [79], Murphy and Hereman compare NLS to Linear Least Squares and solve the
trilateration through linearised equations for localisation in mines. The result shows
that NLS is the better method, which is also stated by Alcocer [55] when compared
to closed form solutions.

• [80] compared UKF and EKF for a short in-water test, but the results are too similar
to draw any definitive conclusions.

2.8.1 Simulated Scenarios - No Constant Error

In the following simulated scenarios, an AUV is following the edges of a square. It runs
with a speed of 1.0 metres per second while moving forward, and 0.5 while turning. The
distance measurement is N (True_distance, 0.5) metres. It shows from Fig. 27 and 28
that the results agree with previous comparisons: NLS performs the best, followed by PF
and EKF which has the highest average error. The comparisons have been evaluated using
100 Monte Carlo simulations.
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(a)

(b)

Method PF EKF NLS GD NLS MC GD DR
Error [m] 9.2 10.5 12.7 8.2 11.3

(c) The average error for 100 Monte Carlo simulations

Fig. 27: A comparison between localisation methods using 3 static transponders transmit-
ting in a round robin fashion periodically. An AUV is moving in a square. The AUV is
measuring the following with a noise in a Gaussian distribution around zero with the fol-
lowing standard deviation: Velocity with 0.5%, Heading with 1.0% and distance with 0.5
metres. Both forms of GD use from 3 up to 6 of the most recent measurements, MC GD
uses 10 instances of GD and chooses the solution with the minimum cost. The PF uses
1000 particles. The jumps in localisation is due to the estimate of the vehicle is assigned
as the estimate from the filter. No path smoothing was performed.
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(a)

(b)

Method PF EKF NLS GD NLS MC GD DR
Error [m] 7.8 9.2 9.3 4.6 11.2

(c) The average error for 100 Monte Carlo simulations

Fig. 28: A comparison between localisation methods using a single static transponder.
An AUV is moving in a square. The AUV is measuring the following with a noise in a
Gaussian distribution with the following standard deviation: Velocity with 0.5%, Heading
with 1.0% and distance with 0.5 metres. Both forms of GD uses from 3 up to 6 of the
most recent measurements, MC GD use 10 instances of GD and chooses the solution with
the minimum cost. The PF uses 1000 particles. The jumps in localisation is due to the
estimate of the vehicle is assigned as the estimate from the filter. No path smoothing was
performed.
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2.8.2 Simulated Scenario - Constant Error

The acoustic channel is hard to model, it changes with depth and is prone to multi-path
from the surface, bottom and other obstacles. As such, the truth is that the error in distance
measurement might not always have a Gaussian distribution around the actual distance
but instead have constant errors due to wrong channel model to estimate the speed of
sound in water [81]. With this in mind it is important to see how the filters perform when
they have a distance measurement infused with a constant bias (ε) added to the distance
measurement N (True_distance, 0.5).

2.8.2.1 3 transponders

The following table describes the error in same scenario as in Fig. 27 while the distance
measurement has an additional constant error of +10 metres.

Method ε PF EKF NLS GD NLS MC GD DR
Error [m] 2.5 7.5 5.3 9.2 5.2 9.4
Error [m] 10.0 10.4 11.5 18.2 8.1 11.7

Tab. 3: Localisation comparison when a constant error of 10 metres is added to each
distance measurement. In this case the same configuration between the 3 transponders as
in Fig. 27 is used.

2.8.2.2 Single transponder

The following table describes the error in same scenario as in Fig. 28.

Method ε PF EKF NLS GD NLS MC GD DR
Error [m] -2.5 7.0 6.7 12.0 6.4 10.7
Error [m] 2.5 9.0 7.9 13.6 7.8 11.1
Error [m] 5.0 11.6 9.1 22.3 9.1 12.9

Tab. 4: Single transponder with constant added error ε Fig. 28

2.8.3 Navigational Dataset from AUV Sirius

The following comparison is based on simulated acoustic transponders and a navigational
dataset from AUV Sirius. AUV Sirius[82] is a vehicle owned and operated by Australian
Centre for Field Robotics, University of Sydney. They have provided a navigational data
set which has been used in various scenarios in this thesis. The dataset is divided into
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two used parts, the first is the raw navigational data used for DR. The second uses the
DR in combination with USBL and vision based SLAM[16]. The length of the mission
is roughly 3 hours. The vehicle and the path (DR and the second part which is considered
to be the true path throughout the thesis) can be seen in Fig. 29. The average error from
DR for the AUV is 195.4 metres.

(a) AUV Sirius. Image-credit ACFR. (b) Path from dataset.

Fig. 29: A dataset collected by AUV Sirius outside of Tasmania, Australia has been used
for navigational data to test and compare different localisation methods.

2.8.3.1 Multiple transponders - no constant error

The following scenario uses 3 static transponders, as seen in Fig. 30a, which transmits in
a round robin fashion. There is no added constant noise. There are different simulations
with different σdistance when the distance measurement is N (True_distance, σdistance).
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(a) Resulting localisation estimates with no noise in the distance measurement.

(b) Positional error from (a)

σdistance PF EKF NLS GD NLS MC GD
0.0 8.5 10.1 10.7 5.5
1.0 8.5 10.1 24.2 5.4
2.5 10.2 14.4 37.8 6.8
5.0 11.5 22.2 43.6 9.2

(c) The average error for the different methods using different levels of noise in the distance
measurement. The DR error is 195.4 metres. The jumps in localisation is due to the estimate
of the vehicle is assigned as the estimate from the filter. No path smoothing was performed.

Fig. 30: The different localisation methods compared using different distributions of the
noise around the true distance.
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2.9 Communication and Navigation Aid

The concept of a Communication and Navigation Aid (CNA) is relatively new and was
first coined by Vaganay et al. in 2004 [20]. The purpose was to try the concept of Moving
Long Baseline (MLBL), a method in which one or multiple vehicles act as navigational
aids to other vehicles by transmitting data used for localisation. Having a surface vehicle
to act as an CNA have multiple benefits. Firstly, an ASV has constant access to GPS mak-
ing it a reliable beacon to transmit localisation messages as its position is accurate within
a few meters at all time. Second, having a vehicle with access to multi-modal communi-
cation (acoustics, satellite, wi-fi etc.) brings the possibility to achieve a close to real-time
communication link with submerged AUVs from a Command and Control Centre (CCC)
(which could be over the horizon), as the CNA can relay the acoustic communication to
other mediums as seen in Fig. 31. The benefits are well discussed by researchers at Woods
Hole Oceanographic Institution (WHOI), where they present how using ASVs/CNAs in
collaboration can remove the need for ships during long term missions [83]. The term
CNA has in literature also been used for AUVs with high confidence in their localisation,
but using an AUV as a CNA removes the possibility for multi-modal communication
while submerged. There are multiple benefit of using CNAs compared to for example
LBL. First, having moving acoustic transponders which can be used for localisation can
overcome the shortcomings of LBL only working in a limited region. This is as the CNA
can follow the surveying AUVs. The second, is as stated earlier, the possibility to use
multi-modal communication to relay data. The deployment and calibration of LBL is a
time consuming task, while a CNA can operate autonomously. Since the vehicles are
operating in the same area, the surface vehicles also have the possibility to launch and
recover the AUVs [84, 85, 86]. Which can reduce human interaction even further.

Fig. 31: Having a CNA on the surface can relay acoustic communication to and from a
AUVs over the horizon or to other platforms not in close proximity as well as aid with
localisation data. Image-credit [83].

A natural progression for cooperative maritime robotics is to reduce the amount of
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resources needed to perform the same objective. As such, for cooperative ASV-AUV
localisation, only using a single CNA/ASV to perform single-beacon localisation would
be beneficial. Reducing the number of vehicles reduces the cost and time to deploy the
system, while as a drawback also reduces the variety of positions to transmit localisa-
tion messages from, and as such more sophisticated planning on the ASV is generally
desired. Fallon et al. [22] used a set of repeating motion patterns on a CNA to encircle or
zigzag above the surveying AUV while transmitting acoustic messages periodically every
10 seconds. As in [56], a comparison between the mean positional error on the AUV
is performed using EKF, PF and NLS (online and post-processed). This comparison is
also made in [66]; the observability of the system is discussed in both. The results of
the comparison between the three mentioned localisation methods all show similar con-
clusions, which is that NLS is the best performing filter, especially when post-processed
[87, 22, 66]. While the results shown in these papers manage to bound the positional error
on the receiving platforms, no intelligent planning was performed on the CNA. Either it
was a simple case of leader-follower scenario with and offset, encircling or zigzag pattern.
In 2010, Chitre and Gao [88, 76] presented a motion planning algorithm which has the
objective to minimise localisation error on AUVs. The CNA used transmits periodically
with the aim to transmit from the semi-major axis of uncertainty on the AUVs, which uses
EKF to localise itself1. The path is found using Dynamic Programming (DP), with the
paths of the AUVs known a priori. An option to compute the plan online as a response
to received information from the AUVs is available. Teck uses cross-entropy to learn a
planning policy for a CNA to bound the error on AUVs. This policy is however learned
considering static speeds on the AUVs [89]. Quenzer and Morgansen control the helming
of a CNA based on the expected observability on AUVs [90]. Bahr et al. also aim to trans-
mit from the semi-major axis of uncertainty of an AUV. By using the maximum speed
of the CNA and the time until next transmission they create a cost map (in the reachable
region of speed∗time) around the CNA and then selects the position which is closest to
the semi-major axis of uncertainty for the AUV [29], which can be seen in Fig. 32.

Glotzbach et al. [72] use the determinant of the FIM, see (20), as a cost function
to find the optimal transponder placement. Similar, Munafó et al. use the approach of
sampling and evaluating the FIM, where the sampling approach is on the perimeter of an
circle which is based on both vehicle speed and the sea current [71].

Yan and Chen et al. [91, 70] look at optimal configuration of multiple ASVs (3+) in
position based on both polar angle and distance, to optimise transmission position based
on distance to the estimated position of an AUV. Their cost function to find distance is
based on the distance measurement error and the depth of the AUV. In the latter paper,
how the number of surface vehicle affect the localisation error on the AUV is compared,
to no surprise, the more vehicles available to transmit, the more variance in measurements
which results in a lower error. It is interesting how this contradicts statements in papers

1This is the geometrical relationship which reduces the uncertainty the greatest in EKF, see section 2.6
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(a) Initial configuration.
(b) After 10 minutes.

Fig. 32: The path-planner presented in [29] evaluates the reachable region around the
CNAs to select the best position to transmit a localisation message based on the received
estimates from the AUVs. In this scenario the CNA transmits periodically every 60:th
seconds with a maximum speed of 1.5 m/s. The AUV moves with 1 m/s, and its covariance
matrix can be seen represented as the red ellipse. The colour bar represents the residual
angle between the vehicles and the semi-major axis of the covariance matrix (red ellipse).
The planner selects the position which results in the lowest residual angle as the next
waypoint. As seen in (b), the CNA does not have a big range of angles towards the semi-
major axis to choose from. This is an issue with planning only a single waypoint ahead
in time.

such as [72] and [69] where the opposite is stated, that only the polar angle affects the
FIM, and hence the distance should not affect the outcome. However, during simulations
with uniformly distributed (120◦ apart) beacons and distance measurements with added
noise and/or constant error the same conclusion could not be made as the distance did not
show any particular affect on the solution. However, this might bring benefits during deep
sea operations as further away (in the X-Y plane) creates a larger slant angle.
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2.10 Summary

This chapter has given an introduction to acoustic communication in the subsurface do-
main and how it can be used for localisation. The methods for localisation are based on
distance measurements between a transmitter and a receiver, which is done by measuring
ToF. While other methods such as measuring angles (USBL or SBL) or TDoA exist, they
often require multiple exchanges of messages or that the receiver is static. OWTT (using
ToF) can instead support all receiving platforms with distances from one single mea-
surement and can hence be desirable in many cases of multi-vehicle operations. There
are multiple approaches to solve the distance-or range-only localisation problem. In this
chapter the more common families of methods and filters used today are presented along
with the current state of the different methods and a comparison between the presented
methods. A focus for this thesis is to improve range-only localisation by positioning of
mobile transponders. This is something that is discussed in many works focused on us-
ing CNAs. In accordance with this objective, the geometrical configurations which help
improve the result for the different localisation algorithms are described.

The results from simulations and conclusions from other papers clearly state that NLS
is the better localisation method for range-only measurements, followed by PF and then
EKF. However, PF’s accuracy is highly dependent on the amount of particles, and the
more particles the greater the computational time, which for small embedded systems
might not be optimal. However, PF is able to represent the possibility of multiple solu-
tion if the distribution is multimodal. Solving NLS through iterative methods (which are
shown to be the better ones compared to closed form solutions [55]) can end up with a
solution in a local minima and depending on factors including the geometrical setup of
landmarks and the learning rate, might require many iterations to find a solution which
is the same drawback regarding computational cost on embedded systems as for PF. As
such, the filters of the Kalman family should not be ruled out as possible solutions.
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3 Path Planning

“Space and time are intertwined;

we cannot look out into space, without looking back into time"

- Carl Sagan

The previous chapter discussed how a robot can localise itself. This is one part of
navigation, the other part is how to plan and move the robot. The purpose for a robot to
move depends on its objective. But no matter what the objective is, it is important that the
trajectory is collision free to ensure safe operations.

Path planning is the art of finding a path which fulfils specified requirements. The
most common being start-to-goal planning: assume start configuration qstart, finding a
collision free path to Xgoal. This can be defined as in equation (42), to find the set of
actions (U1,..,n) which leads the robot from the start configuration to the goal under some
potential parameters. An example could be to find its way to the centre of a maze as in
Fig. 33.

U1,..,n = f(qstart, Xgoal, parameters) (42)

Another category of path-planning is application or objective based, where the goal
is to maximise the value of a path based on specified criteria. This could include area-
coverage [92, 93], leader-follower scenarios [94], avoiding collision at sea (COLREGs)
[95] or as one of the major objectives for this thesis, to plan a path which can support
other vehicles or platforms.

Application based path planning often builds on extensions of the same algorithm as
start-to-goal. Therefore, this chapter will present some of today’s most used forms of path
planning algorithms where the objective is to take a vehicle from one configuration to a
goal. The optimal solution is generally considered to be the shortest path, which can be
analytically derived for simple problems. However, as the dimension and complexity of
the problem increases so does the complexity of the analytic approach. Due to the com-
plexity of the system and environment, analytic solutions are not seen as viable. To solve
this navigation problem, path-planning has become a well-researched topic, leading to a
sea of possible approaches. Some which are inspired by nature (Ant Colony Optimisation,
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Fig. 33: Path planning can be used to find a collision-free path to a goal.

BUG etc.) [96, 97], creating potential fields and using gradient descent or fast-marching
method [98, 99] among many others. However, there are two fields which are seeing more
usage than others: graph-search and sampling-based methods. The work in this thesis has
had the most inspiration from these two categories, and as such the focus will be on them
rather than doing an extensive review of the whole field of path planning, which would be
out of the scope and the reader is instead referred to books such as [100, 101].
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3.1 Configuration-Space

Before presenting the algorithms used for path-planning the representation of the robot
and the world they operate in needs to be defined. This is often based on Lozano-Perez’s
definition of Configuration Space (C-Space) [102]. The C-Space represents the set of all
possible configurations of the robot in the workspace. The workspace,W , is the Rn where
n is the dimension in which the robot operates in (usually 2 or 3). The state of a robot is
represented as a configuration1 (q). The configuration of the robot depends on its position
and potentially also its orientation. For this thesis we only consider rigid body vehicles,
and as such the pose of the robot is not necessary to describe, in contrast to for example
a robotic arm with n joints having a post as a set of n configurations (q = [q1, .., qn]).
Following the notation in [100], the following will be used throughout the thesis:

• C - The configurations space

• W The workspace, also noted as Rn for dimension n

• q a configuration in C. q consists of the following:

– Position in Rn

∗ R2→ [x(east), y(north)]T

∗ R3→ [x(east), y(north), z(depth)]T

– Orientation (SO(n)) in Rn

∗ SO(2)→ [yaw(ψ)]T

∗ SO(3)→ [roll(ϕ), pitch(θ), yaw(ψ)]T

Hence giving q ∈ C = SE(n) =Rn×SO(n) the following:

∗ q ∈ R2 = [x, y, ψ]T (see Fig. 34a)

∗ q ∈ R3 = [x, y, z, ϕ, θ, ψ]T (see Fig. 34b)

With this, all configurations of the robot can be described. However, not all config-
urations are valid due to obstacles and limitations in the environment. An obstacle can
be described as a configuration with a shape, as such we define an obstacle Oi in C as
COi. With all known obstacles (Oi∀i∈[1,..n]) we can define the free C-Space as Cfree = C
\ ∪i (COi). We can now describe a valid configuration q ∈ Cfree, which henceforward a
valid configuration q will be assumed to be in, unless otherwise stated. With the repre-
sentation of the robot and the world defined we can now introduce different approaches
to find a path within Cfree for a robot to reach a desired configuration.

1Configuration and state in literature often describe the same thing.
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(a) top view (X-Y plane) (b) Side view (X-Z plane)

Fig. 34: Configuration of a state. For a vehicle operating in a 2D C-Space (such as an
ASV) (a) can be used and the state is then q = [qx, qy, θ]

3.2 Search-Based Methods

Search-based methods, also called graph-based method, is an approach to finding a solu-
tion searching a graph. A graph consists of vertices2 and edges. An edge (E) represents a
relationship between two vertices, such as a feasible path for a robot to go from state qa to
state qb (edge Eab). An important aspect of an edge is if Eab is feasible it does not mean
that Eba is. This is especially true for robots which cannot move freely in all dimensions
in Rn such as a torpedo-shaped AUV, which needs to maintain a positive forward speed
for control. In this case the edge is called directed. Other types of vehicles, such as a car,
can reverse to go back to a previous state, making the edge undirected. A graph can either
be pre-constructed (such as a map of roads between cities) or it can be created from the
algorithm. From here on, we will consider creating the graphs to be created within the
algorithm, as there are for marine robots no dedicated roads or maps determining how to
move from one state to another.

2Also referred to as nodes, representing a robot’s state or configuration.
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3.2.1 Grid-Based

A grid-based approach to solve the path planning problem divides Cfree into discrete cells.
Each cell then represents a possible configuration for the robot (q1,..,n ∈ Cfree). The cells
can have various shapes and sizes, however most commonly they will be of equal size in
the shape of a square or a cube depending on if the dimension is R2 or R3.

(a) Map (b) Map with grid
(Cfree)

Fig. 35: A map (a) can be divided into a grid (b) where the white cells are Cfree. The red
cells have parts of them occupied by an obstacle and hence the whole cell is deemed as
occupied.

With the C-Space constructed, the next step is to decide the motions allowed for the
robot, this can be for example the closest neighbouring cells as seen in Fig. 36. Each
movement is assigned cost, commonly to represent the length of the movement. However,
various costs can be constructed based on what the goal of the planner is, such as energy
optimisation[103] or to include ocean currents [104].

(a) Motion allowed between neigh-
bouring cells.

(b) Motion allowed between neigh-
bouring and diagonal cells.

Fig. 36: A commonly used set of discrete motions used for to find a path in Dijkstra’s and
A* within a discrete grid
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With this set of rules for possible motions and a discrete grid constructed, a planner
can be used to find the path from the initial configuration Xstart to the goal Xgoal using
various search methods. One of the first approaches to solve this was presented in the
late 1950’s — Dijkstra’s Algorithm [105]. The algorithm, which can be seen in Alg. 1,
is based on iteratively expanding the node (cell) with the lowest cost from a list of un-
expanded nodes. The cost of a node is calculated by adding the cost of the expanding
node and the cost for the movement (see equation (43)). This is performed until a node,
which is in the cell containing Xgoal, is opened for expansion. When this node is opened,
a solution is found (qsolution). By retracing the path in which the cells were opened to
reach qsolution, the shortest path can be found. The way Dijkstra’s Algorithm searches
makes it a breadth-first search algorithm.

g(qi) =
i∑

j=2

motion_cost(qj−1, qj) (43)

The cost of a node in Dijkstra’s algorithm is equal to the cost of the path to reach it
from the root of the search tree, as seen in equation (43) (f(q) = g(q)).

Algorithm 1 Dijkstra’s Algorithm
Input:
XstartXgoal : start and goal configuration
Q : cells q ∈ Cfree

1: procedure DIJKSTRA’S

2: grid = size(Q) ∗∞
3: qstart = Xstart

4: grid(qstart) = f(qstart)
5: OpenList = PriorityQueue()
6: OpenList.insert(f(qstart), qstart)
7: while OpenList! = ∅ do
8: qexp = OpenList.pop()
9: if qexp == Xgoal then

10: return qexp
11: for each q̂exp ∈ QNeighbours(qexp) do
12: if f(q̂exp) < grid(q̂exp) then
13: grid(q̂exp) = f(q̂exp)
14: OpenList.insert(f(q̂exp), q̂exp)

15: return ∅

Roughly 10 years later, Hart et al. presented A* [106] which is an extension to Dijk-
stra’s algorithm which instead of a breadth-first uses a guided search method. A* adds a
heuristic cost to the function determining in what order to expand nodes. This heuristic is
usually a cost based on the shortest path from the expanded configuration to the goal. The
search then becomes informed, being able to find the same path as in Dijkstra’s and doing
so in worst case equally fast as Dijkstra’s but in most cases in a significant reduced time.

57



3.2. Search-Based Methods

To change Alg. 1 to incorporate the heuristics as in A* the cost for a node is changed to
f(q) = g(q)+h(q), where h(q) is the heuristics which could for example be the Euclidean
distance as in (44).

h(q) = |qgoal − q| (44)

(a) Dijkstra’s (b) A*

Fig. 37: A* finds a path with the same length as Dijkstra’s but in less amount of explo-
rations by using an informed search strategy by incorporating heuristics. Cells have the
resolution of 1 unit (whole map is 1000× 1000 units).

In Fig. 37 and table 5 a comparison between Dijkstra’s Algorithm and A*, regarding
iterations to find a solution and how long the path length of the solution is have been per-
formed. A solution is considered to be found when a node is expanded within 50 distance
units form Xgoal. The path length of the solution is then considered to be the length found
path + the distance to the centre of the goal region3. The comparison considers various
cell sizes. It can be seen that A* finds paths of the same length as Dijkstra’s Algorithm,
while expanding less nodes and that the finer the resolution (smaller cell size) the shorter
is the found path, but at the cost of longer execution time as more iterations are needed.

An important aspect of these planners is that they are resolution complete, meaning
that they will find a solution (based on possible motions and the discrete grid) if one exists,
or otherwise are able to report that no solution exists (Line 15 in Alg. 1).

The same problem might both be solvable and not solvable by grid based approaches
depending on the size of the cells. A too large cell size can potentially lead to making a
scenario un-solvable. An example of this can be seen in Fig. 38.

3 The reason for using a region as a goal and the distance to the centre of the region is due to making a
fair comparison to other algorithms which will be described in later sections of this chapter
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Cell size Path length Nodes

D
ijk

st
ra

’s 1.0 637.3 347196
5.0 640.8 13904

10.0 645.0 3496
25.0 645.0 632

A
*

1.0 637.3 139186
5.0 640.8 5885

10.0 645.0 1556
25.0 645.0 289

Tab. 5: A comparison of Dijkstra’s and A* in the same scenario as in 37 regarding the
number of nodes explored and length of found path depending on the cell size/step length.

(a) Low resolution grid - no solution (b) High resolution grid

Fig. 38: The size of the cells in discrete grids might contribute to whether a planning
problem is solvable or not. It also determines how many iterations are needed to find a
solution and the length of the solution.

3.3 Sampling-Based Methods

Another family of algorithms that have been seeing much usage is sampling-based meth-
ods. Sampling-based methods do not operate in the same discrete C-Space as the grid
search algorithms does. Instead it allows all of Cfree to be used as potential states. The
general approach for sampling-based path planning methods is performed in two steps
which are sampling and connection. The sampling step samples random point(s) in Cfree.
The connection step connects the sampled point(s) to the current graph/tree. Sampling-
based approaches have multiple benefits over grid-based ones, including:

• Constructing Cfree for a discrete grid can be computationally expensive and grows
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exponentially with the number of dimensions and size.

• If a too large cell size is used in the grid, it might block the shortest path, or even all
paths (which have been shown in Fig. 38). Allowing all of Cfree to be used enables
a collision free path to be found, if such exists and enough time for planning is
given.

• The path is no longer limited by the discrete set of motions (example as seen in Fig.
36), hence having the possibility to find shorter paths.

Sampling-based methods however have a major drawback which is that they cannot
guarantee to find a solution, even if one exists. Neither can they report that no solution
exists in contrary to the grid-based methods (as can be seen at line 15 in Alg. 1, where an
empty set is returned if no solution is found). Random sampling-based path planners are
however probabilistically complete, meaning that the probability to find a path, if such
exists, goes towards one if enough time/samples are given [107].

3.3.1 Probabilistic Roadmaps

Kavraki et al. presented a random sampling approach to construct a roadmap [108] named
Probabilistic Roadmaps (PRM). A roadmap is useful in scenarios where multiple queries
to find a path within Cfree is desired. It consists of a set of vertices connected to each
other by edges. A vertex can be connected to multiple other vertices. The construction of
the roadmap is performed using a pre-processing phase.

• In the pre-processing phase, the algorithm constructs a roadmap (through sampling-
and connecting-phases) from n randomly sampled points (qr[1,..,n] ∈ Cfree). Each
point in qr is then attempting to connect an edge to its m closest neighbours (if the
edge is collision free). This constructs a map of n nodes, where each have attempted
to connect to its ≤ m nearest neighbours. An example of different n and m can be
seen in Fig. 39.

• With a roadmap constructed, a query to find a path from qstart to qgoal can then be
performed. This step adds a qstart and qgoal state and connects these to the roadmap.
The path between qstart and qgoal can then be found by graph-searching algorithms
such as Dijkstra’s or A*.

3.3.2 Rapid-exploring Random Trees

PRM requires an initially large computational effort to construct its roadmap. Whilst the
roadmap can be re-used if the C-Space is static and there are no changes to Cfree, it might
not be as efficient if new information is integrated in the map or if just a single query is
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(a) 250 vertices with 5 edges (b) 50 vertices with 3 edges

Fig. 39: PRM with two different number of vertices randomly sampled in Cfree and dif-
ferent number of closest neighbours attempted to connect an edge to. If too few of either,
it might result in multiple roadmaps which are not connected, as seen in (b).

desired. A single-query method using random sampling is Rapid-exploring Random Trees
(RRT) [109], which was proposed by LaValle. The core of RRT is based on expanding
a search tree from the root Xstart, where each expansion is based on a random sampled
point (qrand) in Cfree and expanding the closest node (qclosest) in the tree towards qrand
with an edge of a maximum specified length (see Max Distance in (c) in Fig. 40). If
this edge is collision free; the edge and a new vertex is added to the tree. The expansion
can be based on geometric or motion constraints. The method repeats the sampling and
connection phase until either a solution is found or another termination condition such as
maximum number of iterations have been performed.

The algorithm for RRT can be seen in Alg. 2 and visual explanation in Fig. 40. A
simple approach to speed up the time to find a solution is to add a bias of selecting Xgoal

as the random point. This is usually done with a probability of 5− 10%.

61



3.3. Sampling-Based Methods

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 40: Step-by-step visualisation of how an RRT is constructed, (h) shows how (g)
would have connected X6 if RRT* would have been be used.

Algorithm 2 Rapid-exploring Random Trees
Input:
XstartXgoal : start and goal configuration
d : Threshold distance to accept as a solution
δ : expansion distance
Output:
A tree consisting of the vertices V , edges E and state considered a solution qexp

1: procedure RRT
2: V = [qstart]
3: E = ∅
4: while True do
5: qrand = Cfree.random()
6: qclosest = Closest(V, qrand)
7: qexp, collision = newExpansion(qclosest, qrand, δ)
8: if !collision then
9: V.addNode(qexp)

10: E.addEdge(qclosest, qexp)
11: if |qgoal − qexp| < d then
12: return T (V,E, qexp)

3.3.2.1 Asymptotic Optimal RRT (RRT*)

RRT is an algorithm good at exploring large spaces fast without taking the quality of the
solution into account. This is as whenever a vertex is added and connected with an edge
to the tree it does not change, meaning that the path will not be optimal nor can it be
improved over time. In 2011, Karaman and Frazzoli presented RRT* [110] to handle this.
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This is performed by adding a rewiring step after a new state (qnew) has been connected to
the tree. The rewiring step selects a new parent for qnew (within a distance δ from qnew), if
that would result in that the path cost to qroot/Xstart would become shorter. It then checks
the remaining nodes (within δ distance) to see if any of these could be connected to qnew
to create a shorter path to qstart. An example of the rewiring process can be seen in Fig.
41.

(a) (b) (c)

Fig. 41: The rewiring process. (a) A randomly sampled node qnew is connected to the
closest node in the tree qclosest. (b) qnew is rewired to be connected to the node within
δ distance the minimises the cost to qroot. (c) The nodes within δ distance from qnew
calculates the cost to start if they were to change parent to qnew. If the distance is reduced
they are rewired to connect to qnew instead.

How the exploration of RRT* compares to RRT on the same number of expansions
which can be seen in Fig. 42. The asymptotic optimal property of RRT* comes from that
the cost of a node, based on a user-defined cost function, can decrease with the number
of samples [111]. As such, a better solution may be obtained by continuing to run the
algorithm even after an initial solution has been found.

To speed up the convergence for improving the solution, the sample space can be
reduce, as proposed by Gammell et al. in Informed RRT* (I-RRT*) [112]. I-RRT* uses
RRT* until a first solution is found. When a solution has been found the sampling space
instead becomes the union of Cfree and an ellipse. The ellipse is based on the distance
between qstart and qgoal and the current best solution. The ellipse has the property that no
point outside it can improve the solution. This property is due to that if a point is selected
on the perimeter of the ellipse and adding the from said point to qstart and qgoal, the cost
will be equal to the current best solution. The sampling region can be seen in Fig. 43a,
and an example of usage in Fig. 43b.

3.3.2.2 Comparison of RRT’s

How RRT, RRT* and I-RRT* compare to each other in the same scenario as seen in Fig.
44, can be seen in Tab. 6. It can be seen that I-RRT* achieves the shortest path, and that
the longer δ the faster the path is improved as it has a larger area to perform re-wiring in.
For RRT* and I-RRT*, this produces a shorter path than A* and Dijkstra as can be seen
in table 5.
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(a) RRT (b) RRT*

(c) RRT (d) RRT*

Fig. 42: Comparison between RRT and RRT*. (a) and (b) shows the result after 5000
iterations and (c) and (d) after 1000.

(a) The region of sampling is based on the
current shortest path and the Euclidean
distance between qstart and qgoal.

(b) I-RRT*’s solution and sampling
region after 1000 iterations.

Fig. 43: Once a first solution is found using RRT*, I-RRT* can improve the solution at
a faster rate using an informed sampling strategy. This is based on only sampling nodes
which have a possibility to improve the solution.
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(a) RRT (b) RRT* (c) I-RRT*

Fig. 44: RRT, RRT* and I-RRT* after 1000 iterations.

Step length Max Iterations Path length First solution at [Iteration]

R
R

T

10 Until First 878.93 592.4
25 Until First 1055.03 250.9
50 Until First 919.37 125.1

R
R

T
*

25 500 732.00 230.1
50 500 702.83 103.2
10 2500 959.50 720.0
25 2500 685.43 275.9
50 2500 633.05 131.5

I-
R

R
T

*

25 500 861.45 226.2
50 500 688.92 112.9
10 2500 962.65 786.1
25 2500 658.03 295.0
50 2500 624.57 129.2

Tab. 6: Average distance for solution found and iterations to find a first solution under
different maximum step length and maximum number of iterations after 10 simulations
for the same Xstart, Xgoal and map as in Fig. 44, the optimal solution has a length 616.
This is the same scenario used for Dijkstra’s Algorithm and A* in Fig. 37 and table 5.

3.4 Hybrid Methods

An approach to handle the highly discrete motion model used in Dijkstra’s and A* was
suggested by Ferguson and Stentz in Field-D* [113]. In their method, they allow linear
paths between any points within a cell. This can create more smooth paths and results in
a lower cost compared to A*. However, it does not handle the continuous motions which
many vehicles have due to their kinematic constraints. One approach to handle motion
constraints is HA*, which has been used for aerial vehicles [114] and autonomous cars
[115, 116, 117]. Cars have a non-holonomic motion model and hence cannot use a motion
pattern such as the one in Fig. 36. HA* is a hybrid method, it uses continuous motions
and states within a discrete grid. In Fig. 45 a comparison between how the discrete grid
is used between Dijkstra’s/A*, Field-D* and HA* is shown.
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Fig. 45: Dijkstra’s and A*’s states are stored as the centre of cells, Field-D*’s uses the
corners of the grid and can connect an edge to any point at a edge between non-diagonal
neighbouring corners. Hybrid-State A* (To the right) have continuous values within cells,
allowing for a smooth continuous motion. Image-credit Dolgov et al. [116]

The big difference to previous grid-based methods is that in HA* a cell in the grid
stores the state of the vehicle both as a continuous value in position and orientation. Pri-
ority of expansion of states is based on the same principle as in A* — the state with
the lowest cost (f() = g() + h()) is selected for expansion. The expansion of a state is
dependent on the configuration of the node being expanded and uses a motion model to
calculate the new state’s position and orientation. A new state cannot be created if it ends
up in a cell which contains a state with a lower path cost (g()).

In chapter 4 HA* will be described in more detail as it has been extended from the
usage for vehicles operating in a 2D plane such as autonomous cars to vehicles operating
in 3D to be usable for torpedo-shaped AUVs. Torpedo-shaped AUVs are, like cars, non-
holonomic but are able to change depth, hence the planning is in SE(3) instead of SE(2).

To show an example of a path planned by HA* for a vehicle with motion constraints
in the same scenario as Dijkstra’s/A* (Fig. 37) and RRT/RRT*/I-RRT* (Fig. 44) can be
seen in Fig. 46. In the figure, the possible motions of the vehicle have been discretised
into a set of possible turning radius. An example of how these can look like can be seen
in Fig. 46b. The length of the motions along with the number of motions used for the
expansion will, just as the cell-size and available expansion directions in A*, influence
how many expansions are needed to find a path and the path cost of the found solution.
HA* is resolution complete in the same sense as Dijkstra’s and A*; if a path exists that
can be reached with the specified motion capabilities, one will be found, and if it does not
exist, the algorithm is able to report this.

3.5 Planning under Constraints

In the section for hybrid methods, HA* was presented which mentions planning a path
based on the vehicle’s motion constraints. This is for many fields of mobile robotics an
important factor. If the goal is to find a path which should be followed as precisely as pos-
sible, e.g. to avoid obstacles, the path needs to be feasible for the considered robot. The
typical motion patterns for A* and Dijkstra’s in the grid seen in Fig. 36 is not achievable
unless the robot is able to move without freely in all directions. This is however not the
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(a) Small steps (length = 25 units) (b) Large steps (length = 100 units)

Fig. 46: A path planned by HA* takes the kinematic model of the vehicle into considera-
tion, ensuring a path which is both feasible (continuous motion) and collision free. In b)
the red lines are states in the closed list (already expanded), green is currently in the open
list (able to be expanded) and black is the found solution. The distance to reach the goal
region+distance to the centre of the region is for (a): 600+47.32 and for (b): 700+29.48.

case for many robots. Instead the motion constraints of the vehicle should be taken into
consideration while planning a path to ensure that it is feasible to execute. Another aspect
that needs to be considered for online path planning is the time constraint to plan a path.
A robot needs to be able to plan its path before it needs to be executed. For real-time
operations where a vehicle cannot stop to plan its next trajectory, being able to plan a path
within a strict time constraint is necessary. This section will discuss path planning from
the point of planning under both motion and time constraints.

3.5.1 Real-time and Anytime Path Planning

While planning a path, the planning-time is often a tight constraint, since a robot needs to
be able to plan a path before it needs to execute the plan. For some fields this time is not
necessarily a constraint, such as a static robotic manipulator or an autonomous car in a
static environment. This is an issue for other robots such as an aerial robot which cannot
hover or a torpedo shaped AUV which needs to be in constant motion to have control over
its movement. Such robots cannot wait for a plan to be finished, but need to have it solved
within a limited time. Hence the need to be able to plan a path in real-time is of high
importance.

For these types of scenarios, the ability to plan a path fast is a must, however, there
is as of today no fast planning method that is consistent and optimal. As has been seen
in previous path planners, some algorithms are able to calculate a non-optimal path fast.
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Even if the path is not optimal, it is still a feasible start and a path that can be improved
over time. This is where the term anytime in path planning can make a difference. Any-
time path planning refers to the possibility to be able to improve a path by allowing the
algorithm to run for a longer time. In this chapter, RRT* and I-RRT* are examples of
where a first non-optimal solution is found, but by allowing more iterations the algorithms
can keep improving the solution as can be seen in 47.

Fig. 47: RRT* and I-RRT* can improve the solution by additional execution-time after a
first solution has been found. The scenario here is the same as in Fig. 44.

The path found by methods such as RRT* can be improved during execution. Kara-
man et al. uses RRT* to find a path. While the path is executing it continues to improve
the path until the vehicle reaches its next planned state [118].

An approach to handle re-planning/reparation of paths created by A* is Dynamic
A* (D*) by Stentz. It starts the search from the goal. D* is an incremental search method
which can repair paths instead of re-planning from scratch [119]. This achieves a substan-
tial speed-up. The algorithm was simplified by Koenig and Likhachec in D* Lite [120],
which builds on the work of Lifelong Planning A* (LPA*) [121]. Lickhachev et al. have
also presented an anytime version (Anytime Dynamic A* (AD*)) which incrementally
improves the solution by updating the search by decreasing the weight of the heuristic
cost function.

3.5.2 Planning under Motion Constraints

If one of the objectives for a path planner is to find a feasible and collision free path
for robot, the motion constraints of the vehicle should be taken into account. Planning
by taking the kinematic or differential constraints into consideration is also known as
kinodynamic motion/path planning. An example where a path is planned based on the
motion constraints of a non-holonomic robot were shown in Fig. 46b. It can be seen how
all the explored paths have a smooth and continuous motion, which is able to be followed
by a robot.

The set of motions described for Dijkstra’s and A* have so far been assumed to be
able to move as in Fig. 36. This is for many robots not a feasible set of motions as it
assumes that they can move freely along all axes. An alternative approach can be seen in
Fig. 48 [122]. This extension to the possible motions by Pivtoraiko et al. allows to one to
apply the same algorithms (Dijkstra’s/A*) but the expansion of a state is also dependent
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on the orientation of the vehicle. As such instead of operating in R2 a configuration is
now in SE(2) (x, y and yaw as seen in section 3.1). It is important that the end of a motion
ends in a discrete set of possible angles in the centre of a cell, as in Fig. 48. It can be
seen that the vehicle is facing either north, east, west or south in each state. The number
of discrete angles are however arbitrary as long as it is consistent. This extension can
be incorporated by changing the QNeighbours(qexp) to return the set of possible expansion
based on qexp’s position and orientation, along with the cost of the new set of motions.
This allows for planning of continuous paths in a discrete grid. The paths can also span
over multiple cells allowing long continuous paths between two non-neighbouring cells
[123].

Fig. 48: Using a discrete set of motion capabilities, where each motion ends up in the
centre of a cell allows for planning of continuous movements in a discrete grid. Image-
credit Pivtoraiko et al. [122].

Using RRT to extend a tree based a vehicle with non-holonomic constraints was per-
formed by Heo and Chung [124]. Their approach first builds a tree which is later solved
by A* to find the shortest path to the goal region. An example of where RRT has been
used taking motion constraints into consideration can be seen in Fig. 49.

Using a sampling-based approach which prioritises exploration of unexplored regions
which are relevant to solve a query is performed in Expansive Space Trees (EST) [125,
126, 127]. It can extend the search tree based on the motion constraints of the vehicle.
This was expanded to use a guided approach to reach the goal region in less explorations in
[128]. An approach presented by Plaku et al. named Discrete Search Leading Continuous
Exploration repeatedly finds a guided graph, a lead, which is then used as a guide to
determine where to sample for expanding a search tree under the kinodynamic constraints.
This is performed until a solution is found or a maximum execution time has been reached
[129]. Vidal et al. also use a lead planned by RRT* to follow by a multi-layered path
planner based on sparse-RRT [130].
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(a) Cluttered environment (b) Structured environment

Fig. 49: RRT is expanded using the specified motion constraints of the vehicle to ensure
that the path is both collision free and drivable.

An extension to RRT* for constant depth planning for AUVs was proposed by Hernán-
dez et al. [131] where Dubins curves [132] is used to connect two states of vehicles based
on Left- and Right-turns and Straight paths. This gives the following combinations of
motions LSL, LSR, LRL, RSL, RSR and RLR, which can be used to connect any 2 con-
figurations (considering a obstacle free space). An example of Dubins curves can be seen
in Fig. 50. Dubins curves have also been used to plan paths in 3D for AUVs [133, 134].

Fig. 50: Dubins curves performing a Left-Straight-Left action (from Q0 to Q1) followed
by a Right-Straight-Right (from Q1 to Q2). Using Dubins curves with a minimum turning
radius ensures that the planned path is feasible

Another approach to achieve drivable paths using RRT is to sample a set of random
controls or by choosing from a set of controls and choosing the one resulting in the closest
state to qrand, as in Alg. 2 [135]. The interval of sampling can be limited by first estimating
n different intervals using n+1 different turning commands (with the steering rate Ψ). For

n = 4 the different steering rates could be Ψcontroli ∈ {−Ψmax,−
Ψmax

2
, 0,

Ψmax

2
,Ψmax}

generating the n intervals as {[−Ψmax,−
Ψmax

2
], [−Ψmax

2
, 0], [0,

Ψmax

2
], [

Ψmax

2
,Ψmax]}.
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Choosing the Ψcontroli which generates the closest qnear and the neighbouring Ψcontroli±1

closest to qrand. The interval of sampling then becomes in the range between the closest
and its best neighbour [136]. This can be seen in Fig. 51.

Fig. 51: Finding the interval which contains the closest states to qrand to be within the

steering rates [−Ψmax

2
, 0]. Random sampling a number of steering rates within this inter-

val and selecting the qnear which is the closest to qrand as the new expansion of the tree
[136].

Another method which is used to plan feasible paths is the Dynamic Window (DW)
approach is an online planning method which is based on sampling a region of reachable
states. The region is dependent on the dynamics of the vehicle, and the sample which re-
duces a user-defined cost function (typically the one deemed to reach the goal the fastest)
is selected as the next step for the robot to move towards [137]. The method can however
get stuck in local minimas, and a global DW approach have been presented [138] which
use a navigation function (based on wave-propagation from the goal) to calculate the dis-
tance in cells based on the distance to the goal. This is used to aid the dynamic window
to calculate the cost to the goal when evaluating new states. It has been used for AUV in
2D [139] and 3D [140].

To ensure safe and feasible paths the motion model of the vehicle should be consid-
ered. However, the scale of operation is also important to take into account, in Fig. 42a
and 42b a path from the Fort Williams, west coast of Scotland to Edinburgh, East coast
of Scotland is found. At this scale taking the motion constraints might not be necessary
for all vehicles, but instead it could be applied between waypoints along the found path.
For large vehicles as tankers, this might however be of more importance as they can have
a turning radius on the scale of kilometres.
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3.6 Summary

This chapter has given an introduction and a review to some of the more common methods
for path-planning along with some extensions to solve planning under time and motion
constraints. Different algorithms have their own strength and weaknesses. The grid-based
methods do not necessarily scale well with dimension nor in their standard form take mo-
tion constraints into account. The size of the cells within the grid can also cause a solvable
problem to be un-solvable, or to make an easy problem very computationally expensive in
the case of too small cell-size. They can however, always report if a solution exists or not
depending on the resolutions which makes them a resolution complete planner. This is
something that is not true for sampling-based methods. Sampling-based methods’ proba-
bility to find a solution instead goes towards one as the number of iterations goes towards
infinity, instead making them probabilistically complete. This amount of iterations is of
course not possible, and for most problems the sampling based methods are efficient at
finding a solution in any dimension relatively fast. These methods also have the poten-
tial to become improved over time by allowing more iterations. This property is called
anytime.

It is clear that there is no "optimal" planner for all scenarios. This thesis will in later
chapters present different path planners which are inspired by the ones mentioned in this
chapter.
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4
Online Path Planning in 3D Under

Motion Constraints

For a path to be truly useful for an autonomous vehicle it needs to be planned while
taking on the constraints and limitations of the vehicle into consideration. Methods such
as Dijkstra’s, A* and PRM do not necessary account for these. These could be kinematic
and environmental constraints, and by using these during planning improve the possibility
that a planned path is actually feasible for the robot. In section 3.5.2 some methods which
have been used to plan paths for vehicles while taking the motion constraints of the vehicle
into consideration are presented. Another approach which is mentioned in section 3.4, is
Hybrid-State A*, which has proven successful for a non-holonomic vehicle such as a
car [115, 116] which operates in C= SE(2) = R2×SO(2)1. This chapter will focus on
applying HA* to maritime vehicles. The vehicles considered are under similar constraints
as a car, but are even more restricted in their motion capabilities. The first category is
torpedo-shaped AUVs. These vehicles generally need a constant forward motion to be
able to control their motions as they are naturally buoyant and would drift. Their motion
capabilities includes turning and changing depth. Compared to a car they cannot reverse,
and as such it is therefore important that a path planned is both feasible and collision free.
If motion constraints are not taken into consideration a path might lead the vehicle into
a state which is guaranteed to collide with an obstacle. The capacity to change depth
makes them operate in C= SE(3) = R3×SO(3). The second type of vehicle that will
be considered is an ASV which has the same motion capabilities as boats. They operate
in the same C-Space as cars: C= SE(2) = R2×SO(2). However, as the dimension is
higher for torpedo-shaped AUVs, planning for them is more complex and hence they will
be the main focus of the chapter.

Torpedo-shaped AUVs are seeing much use in the maritime environment. They are
primarily used for surveying big areas and exploration where energy efficiency is impor-
tant. While the vehicles are often able to control their orientation in all 3 directions, this
is not always desirable. The sensors they are equipped with are often used to sense the
bottom. This can both be for mapping (side-scan sonars, cameras or lasers etc.) or to
measure the velocity with a DVL. To achieve good data from these sensors it is important
to have bottom-lock2 This is equally true for missions under the ice where the sensors are

1See section 3.1
2If the sensors lose the sensing capabilities of the bottom they cannot produce reliable data for naviga-
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4.1. Motion Pattern

directed upwards instead [141]. This chapter will take this into consideration and reduce
the number of dimensions to plan in by removing the control of roll motions. Pitch mo-
tions can result in similar issues, but as this is needed for making a robot change depth it
is still needed.

Other path planning methods have been used in the marine environment, most of
these which take motion constraints into consideration have been sampling-based [124,
131, 133, 134, 130]. Sampling-based methods are however as stated in chapter 3, prob-

abilistically complete, which means that they are not able to verify if no solution exists.
Grid- or search-based methods can on the other hand verify if (based on grid- and cell-size
and motion capabilities) a solution exists or not. The proposed version of HA* are also
resolution complete and can hence report if a solution cannot be found.

The determining factor if a query is solvable or not is dependant on the motion ca-
pabilities and the environment. The presented algorithm in this chapter applies what is
called a pattern to ensure drivable paths.

4.1 Motion Pattern

Planning a feasible path in 3D needs to be based on the motion capabilities of the vehicle.
In this chapter the main focus will be on non-holonominc vehicles such as torpedo-shaped
AUVs. These vehicles have a high limitation in their motion capabilites, which can be,
for most vehicles of this class, be broken down to; forward-motions that includes turns
and change of depths. This chapter presents what is called a motion pattern. This is a set
of feasible motions that the vehicle of consideration is capable of. However, by defining
other motion models of other types of vehicles such as a ROV, ASV or an AUV with
higher degree of freedom in both dimension and orientation can be used by supplying
a different motion pattern. A turning manoeuvre for a torpedo-shaped AUV can be cal-
culated as a function dependent on the current configuration, the length of the desired
trajectory with a radius around a point as seen in Fig. 52 [101].

A motion pattern consists of n branches (feasible motions). Each branch in its turn
has m intermediate states. The intermediate states can be used for collision detection
alongside checking for other constraints and limitations of the vehicle to evaluate if the
branch is feasible. By adding multiple motion patterns, to turn both in the local X-Y plane
and to change depth, a pattern such as seen in Fig. 53 can be obtained.

A motion pattern has its origin in a zero origin, where all coordinates and orientations
in the branches are in relation to 0. To apply a motion pattern to an expanding state qexp
each of the intermediate states are transformed as in (46) using (45) in which ψ and θ is
the pitch respective yaw orientation of qexp along with its x, y and z position.

tion.
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Fig. 52: The configuration q′ can be calculated as a function dependent on q, the trajectory
length L with the radius R around the coordinate C. This can be used to calculate a
feasible motion (a branch in the motion pattern).

(a) X-Y plane (b) X-Z plane (c) Isometric view

Fig. 53: A motion pattern where yaw and pitch is controlled with 4 steering rate (in
each of left, right, up and down) and moving straight forward allows for movement in 3
Dimensions.

T (x, y, z, ψ, θ) =

cos (ψ) ∗ cos (θ) − sin (ψ) cos (ψ) ∗ sin (θ) x

sin (θ) ∗ cos (ψ) cos (ψ) sin (θ) ∗ sin (ψ) y

− sin (θ) − sin (ψ) cos (ψ) ∗ sin (θ) z

 (45)

In (46), P is a branch’s (Φ) intermediate state’s (φ) configuration’s position as: [φx, φy, φz].

qnew = T (x, y, z, ψ, θ) ∗ P> (46)

After the position has been translated, the orientation is added as: qorientationnew =

qorientationexp + [φpsi, φθ].
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4.2 Pattern-Based Hybrid-State A* in 3D

By using a discrete set of motions for a vehicle to a create pattern as in Fig. 53, grid-
and graph-based algorithms can be used. The end states of such motions will however not
necessarily end in the centre of a cell or the edge between two corners of a cell. As such
the representations of a state used in A* or field-D* (see Fig. 48) cannot be used, neither
does this consider orientation of a configuration. A state in HA* is instead stored within
a cell with the configuration’s continuous value in position and orientation. A cell can
also be divided into segments representing the orientation of a configuration. While the
discritised version of¸in A* uses Cfree where only a cell which does not have an obstacle
in is a part of, Pattern-Based Hybrid-State A* (PBHA*) is able to use all of C. This is
as a configuration represents a position within a cell, but a cell can be partly occupied by
an obstacle. Hence, as a too large cell-size which in the gird of A* could block a narrow
passage (see Fig. 38b) this is not an issue using HA*. A cell is instead used to deny
opening multiple expansions in the same cell if a new one has a longer path cost (g(q))
than the one already occupying the cell. Having a map from C along with the obstacles
Oi,..n, a motion pattern Ψ along with an initial configuration Xstart and a goal Xgoal,
PBHA* can be used and is seen in Alg. 3.

Algorithm 3 Pattern-Based Hybrid-State A*
Input:
XstartXgoal : start and goal configuration
Q : cells q ∈ C
O : Obstacles
Φ : Motion pattern

1: procedure PBHA*
2: grid = size(Q) ∗∞
3: qstart = Xstart

4: grid(qstart) = f(qstart, qgoal)
5: OpenList = PriorityQueue()
6: OpenList.insert(grid(qstart), qstart)
7: while OpenList! = ∅ do
8: qexp = OpenList.pop()
9: if qexp ∈ Xregion

goal then
10: return qexp
11: for each φ ∈ Φ do
12: q̂new, V alid = expand(qexp, φ,O)
13: if Valid and q̂fnew < grid(q̂new) then
14: grid(q̂new) = f(q̂new, qgoal)
15: OpenList.insert(grid(q̂new), q̂new))

16: return ∅

In Alg. 3 at line 12, the code for how to expand a branch from a state (qexp) is described
in Alg. 4. In the expansion step, the intermediate nodes are checked for collision. If a
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4.2. Pattern-Based Hybrid-State A* in 3D

collision is detected, the expand function returns an empty set and an indication that the
expansion could not be completed, and hence the motion is invalid and should not be
added to the open list.

Algorithm 4 Expand
Input:
qexp : State to expand from
φ : Branch of motion pattern
O : Obstacles

1: procedure EXPAND

2: for each φi ∈ φ do
3: qintermediateinew = T (qexp)φi
4: if (qintermediateinew ) ∈ O then
5: return ∅, False
6: return qnew, True

The expansion algorithm can be modified to incorporate various limitations such as
maximum pitch angle or depth of the vehicle by extending the if statement on line 4 to
handle this.

4.2.1 Implementation of Pattern-Based Hybrid-State A* in 3D

The HA* implementation described here is using a supplied pattern is done in the pro-
gramming language C++ using Robotic Operating System (ROS)[142]. The benefits of
extending HA* to be based on a supplied (pre-calculated) pattern is trifold: 1) The possi-
ble motions only have to be calculated once, reducing computational time. 2) Increasing
the resolution is simple by adding more branches to the pattern. 3) The algorithm can be
used on an arbitrary vehicle as all that is needed to change vehicle type is to supply a new
motion pattern.

4.2.1.1 Collision Detection

To plan a collision free path, the objects in the known environment must be described in
some way. In our implementation this is done with an Octomap [143]. By using a using
a geometric model (such as a cylinder, box) or an actual model of the vehicle, a collision
detection is performed by placing the model within the Octomap and seeing if it overlaps
with any obstacles. This check is performed using Flexible Collision Library (FCL) [144].
Finding a path while using a precise model of the vehicle might end up in collisions when
executed due to the control not being perfect and external sources of error and noise in
the map. A method that can reduce risk from collision while executing a planned path can
either be to have the obstacles in the map or the vehicle enlarged [100]. Another approach
to reduce collision risk is to add risk zones around the vehicle [145] which adds a penalty
to paths depending on which risk zone is overlapping with known objects.
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4.2. Pattern-Based Hybrid-State A* in 3D

The implementation described uses an incremental collision check [100], as seen in
Fig. 54, by traversing each branch’s intermediate state from the first to the last until either
the last one is found to be collision free to return it as a possible extension. If it is a
viable path, and the cell for qnew is either free or currently occupied with a higher cost
configuration, qnew is added to the tree. If it is not valid, or the cell which qnew ends in is
occupied by a lower cost state; qnew is discarded.

Fig. 54: Incremental collision check is performed by traversing the intermediate states of
a branch in the motion pattern until either the end state is reached (ψ2:6) or a collision is
found (ψ1:4).

4.2.2 Priority for Expansion of a Configuration

The priority for PBHA* to expand un-expanded configurations is based on a cost function.
The cost function is, similar to A*, guided by an heuristic. A benefit of heuristic guided
motion planners is that they prioritise expansion of states that are estimated to be closer
to the goal. The cost (f(q)) for a state is considered to be the the path cost (g(q)) added
with the heuristic cost (h(g)), as in (47).

f(q) = g(q) + h(q) (47)

4.2.2.1 Path cost

The path cost, g(q), for a state qi as in equation (43), is commonly considered to be the
length of the path from qstart to the qi.

However, the cost can be weighted as, branch_length(qj−1, qj)∗ εi, for some applica-
tion such as using a cost-map or a weight-function, similar to Transition-based RRT [146]
to keep a specified depth or altitude among others. An example of such paths can be seen
in Fig. 55.
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(a) Adding a penalty to the path cost depending on how the estimated altitude would differ from a
reference can make the planner aiming to plan to keep the vehicle at a certain altitude. This could
be desirable for side scan data etc.

(b) By adding a penalty to the cost of a path for changing depth a planner which aims to find a
feasible path which is in the plane can be obtained.

Fig. 55: By adding a penalty to the path cost (g(q)) the path can be more dependent on
the known environment.

4.2.2.2 Heuristic function

The heuristic function (h(q)) represents what is estimated to be the minimum cost from
one configuration to the goal. The heuristic cost function can be used to guide the expan-
sion towards expanding states which are more likely to find a solution faster. That is by
putting a bias towards states closer to the goal. If no heuristic is used, the search becomes
breadth-first, which is what is performed in Dijkstra’s algorithm. If the heuristic is equal
or lower than the actual to the cost of moving from a state to the goal, it will find the
optimal path based on the used pattern resolution. If the heuristic is instead higher than
the cost to reach the goal the algorithm becomes a greedy, best-first search giving a bias
to states closer to the goal. This is called a weighted heuristic. A typical heuristic cost
function could be the Euclidean distance between a configuration and the goal, as in (44).
However, using a weighted version of (44) as in (48) can speed up the algorithm while
achieving at worst a solution which is maximum ε times longer [147]. The higher the ε,
the more of a greedy the search becomes.

h(q) = ε ∗ ||qgoal − q|| (48)
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A comparison on how different weights affect the solution in terms of number of
expansions, execution time and path length will be presented in section 4.3.2.1 and table
7.

4.3 PBHA* in Known 3D Environment

The first type of environments the algorithm is tested is in a completely a priori known
static environment. The vehicle considered is a torpedo-shaped AUV. For the considered
vehicle a pattern where each branch is at the length of 3 metres, divided into 10 equally
spaced intermediate states is used. As the length of a branch is 3 metres, the resolution of
the found path will also be in increments of 3 metres. For the presented 3D scenarios, a
comparison of the found paths along with the time and expansions to find it can be seen
in table 7.

4.3.1 Scenario 1: Blocks

The first considered scenario is based on a map from Sant Feliu de Guíxols in Spain
(satellite view in Fig. 56). It consists of multiple blocks with the size 14.5m ∗ 12m which
are separated by 4 metres.

The vehicle’s initial state is on the surface and the goal is to go to a region on the
other side of the blocks which is 6 meters below the surface, and 30 respective 80 metres
away in the X-Y plane (Xstart = [0, 0, 0] and Xgoal = [30,−80,−6]). The goal-region
is considered to be all points within 3 metres of Xgoal. The scene is represented by an
OctoMap [143], which can be seen along a planned path by PBHA* in Fig. 57.

Fig. 56: Satellite image of the location where scenario 1 for PBHA* is based form. Image-
credit Google.
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(a) Top
(b) Front

(c) Isometric

Fig. 57: A path planned by PBHA* in a known environment. Black dots are the planned
path and the green arrows are the orientation for the vehicle along the planned path (pitch
and yaw). Blue and red dots are the end state of branches in the pattern along the travelled
path’s states.

4.3.2 Scenario 2: Underwater Terrain

The second scenario is in a simulated natural feature of topographical changes, which can
be seen in Fig. 58. The vehicle’s objective is to go from Xstart = [−5, 15,−6] to the
region within 3 metres from Xgoal = [27, 45,−8].

4.3.2.1 Weighted Heuristic Comparison

The selection of the weight for a weighted heuristic function greatly affect in which order
the states are expanded. In table 7 a comparison of the two presented 3D scenarios can be
seen.

In table 7, it can clearly be seen that a non-weighted (where ε = 1.0) version of
the Euclidean distance as heuristics achieves the shortest path. However, the planning
time is high, making it unsuitable for online planning. If instead a weighted heuristic is
considered, the planning time can be greatly reduced. In the blocks scenario, when high
weight is used, the planning time is greatly reduced while the path length might be slightly
increased. For the highest weighted scenario (ε = 3.0), the planning time is reduced to
roughly 0.2% of the time for the non-weighted version while only increasing the path
length by 9%.
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Weighted Euclidean Distance
weight (ε) Length [m] Expansions Time [s]

Scenario 1: Blocks
1.0 99 6253 51.5721
1.1 105 4438 26.1212
1.2 105 2088 8.1494
1.3 105 553 1.4044
1.4 105 251 0.6402

1.43 105 203 0.4768
1.47 108 104 0.2305
1.5 108 68 0.1528
2.0 108 55 0.1202
3.0 108 43 0.1002

Scenario 2: Natural environment
1.0 45 244 0.383
1.1 45 19 0.030
1.2 45 18 0.026
1.3 45 17 0.024
1.4 45 17 0.024
1.5 45 17 0.024

1.75 48 21 0.028
2.0 48 22 0.029
3.0 51 18 0.025

Tab. 7: Comparison of different ε values for weighted Euclidean distance as heuristic.
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(a) Top
(b) Along path

(c) Isometric

Fig. 58: a path planned by PBHA* in a known environment. Black dots are the planned
path and the green arrows are the orientation for the vehicle in the planned path (pitch and
yaw). Blue and red dots are the end state of branches in the pattern along the travelled
path’s states.

4.3.2.2 RRT comparison

RRT has become a widely used algorithm for path planning showing success in various
scenarios and dimensions as stated in section 3.3.2. A comparison between PBHA* to a
version of RRT which uses the same motion pattern during expansion of a state has been
performed. While RRT does not find optimal paths, it can give an indication of how it
performs for finding an initial solution. As RRT is a stochastic method, 10 simulations
of RRT have been performed for the same scenario as in section 4.3.1. The results can
be seen in table 8. In Fig. 59 and 60, paths found from different simulations using the
described RRT version are shown.

As seen in table 6 a comparison between RRT, RRT* and I-RRT* shows that RRT

83



4.3. PBHA* in Known 3D Environment

Scenario: Blocks
Parameter min avg median max
Time [s] 0.2589 1.01156 0.4554 5.583

Expanded Nodes 156 479.9 284.5 2028
Path [m] 117 131.6 133.5 147

Scenario: Terrain
Time [s] 0.117 7.55 2.00 25.97

Expanded Nodes 129.0 2240.29 1489.0 5977.0
Path [M] 57 75.86 75.0 96

Tab. 8: RRT using the same pattern, start and goal configuration as in Fig. 57 and Table
7. The results presented are based on the RRT method running 10 times.

finds a first solution faster than the others. This is of interest when comparing PBHA* to
RRT when they use the same method of expansion. When comparing the lowest values for
RRT in table 8 to PBHA* in table 7 it can be seen that PBHA* performs better regarding
execution times/number of expansion (except for ε = 1.0), and achieves a lower path
length in all scenarios compared to the best for RRT.
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(a)

(b)

(c)

Fig. 59: Paths planned by RRT in a known environment. The sampling has a 5% bias
towards choosing the goal as a sample.
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(a) 57 m, 2.98s, 1901 exp (b) 75 m, 21.056s, 5401 exp

Fig. 60: Example of paths found by RRT in the second scenario: underwater terrain along
with the length and time to find a solution and number of expansions.
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4.4 Reparation Using Previous Explored Tree

Navigation in unknown or partially unknown environments may lead to the current plan
being obstructed by an unknown object. If the vehicle is equipped with sensors able to
detect such an event, the path needs to be updated. This can be done by either re-planning
the path from the current state with an updated map based on the new detected obstacle or
by repairing the current path. While planning a path to a goal many explored paths will
not lead up to the solution. However, if a path has to be repaired due to a new obstacle
which blocks the current path has been obsereved, one of the other previously examined
paths might be useful. In the event that an obstacle is observed which blocks the current
path, the planner repairs/re-plan the path by re-using previously examined paths. Before
a repair starts, the tree is pruned from the branches which would lead to collision with
the new obstacle(s) similar to work by Bekris and Kavraki in [148]. The flowchart for the
reparation by pruning and re-using a previously explored tree can be seen in Fig. 61.

Fig. 61: The architecture for PBHA* which allows repairing of a path using previously
explored states by pruning branches colliding with newly discovered obstacles.

The pruning procedure needs to trim the tree from all states which are not usable
anymore. These are both the states which will lead to collision in the future and all states
that depend on them. The past states which have already been visited (or are presently
being depended on) should also be removed from the tree. A visualisation of this can be
seen in Fig. 62.

4.4.1 Reparation Simulation in 2D

To visualise the reparation using previously explored trees, a 2D scenario was designed.
This scenario is based on a vehicle planning its path with PBHA* with pruning capabili-
ties using the same pattern as shown in Fig. 62. The map for the scenario is completely
unknown to the robot, as can be seen in Fig. 63a, where the vehicle first plans a straight
path to the goal region. In the image, the grey obstacles are currently unobserved. When
a parts of an obstacle are observed, an enlarged version of the observed object is added
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(a) An object/obstacle has been ob-
served. The tree is checked and non-
feasible paths are pruned

(b) The pruned tree is used as input for
the path planning algorithm

Fig. 62: The vehicle (red arrow) has detected an object which is blocking the path. In
(a) it checks which paths are obstructed and prunes the tree of those branches. In (b) the
remaining tree after being pruned is used as input for the planner.

to ensure a safety margin for the vehicle [100]). Each time the vehicle’s path is found no
longer be feasible, it uses the tree from the current state as the initial tree to plan a new
path from. As can be seen in Fig. 63, the vehicle after some reparation manages to get
to the goal region without any collisions. The vehicle in this simulated case is equipped
with a sensor able to measure 250 units with a 60◦ field of view.

The re-planning using previous explored paths for the presented scenario reduces the
number of expanded nodes compared to re-planning from an empty tree. For the described
scenario the amounts of expansion to find a path can be seen in Fig. 64.
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(a) (b)

(c) (d)
(e)

Fig. 63: Planning and repairing in an unknown environment. The grey area is an obstacle
which has not yet been observed. When observed the vehicle adds that part with a static
uncertainty bound around the observation. (a): initial planned path, while executed in (c)
it notices a collision will occur and needs to react to create a new path. Some time later in
(b) it has started to turn south and will later observe more of the obstacle in (d) and will
start a path going north again until it in the end (e) it finishes a path around the obstacle.
The simulated vehicle is equipped with a forward looking sonar with a 60◦ degree field of
view.

Fig. 64: Re-planning using the previous explored states reduces the number of expansions
needed to find a solution. This graph is for the simulation shown in Fig. 63.
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4.5 Summary

This chapter has presented a search based method to solve start-to-goal path planning
under motion constraints.The potential motions are discritised into a pattern, which is a
set of feasible trajectories for the vehicle. The chapter shows how exploration guided by
weighted heuristic can be used to find a feasible path in real-time in 3D scenarios for
non-holonmoic vehicles. It also shows how keeping previously explored paths during
the execution of a path can help to reduce the time to re-plan/repair a path if a obstacle
blocking the current path is observed.

A big advantage of the planner is that it is resolution complete, meaning that it will be
able to find, and report if a solution exists. This is however based on the resolution of both
the discrete grid as well as the resolution of the supplied motion pattern. A supplied set
of potential motions reduces the complexity of the usage, as it can easily be changed and
adapted to different types of vehicles as well as adding more possible trajectories gives a
higher resolution. The presented planner shows a decreased time when compared to an
RRT using the same type of motions for expanding a node in the tree. The property of
being resolution complete

This planner have great benefits for planning in the local space of the vehicle. The size
of the local space as well as the resolution of the grid where the planning is performed does
however need to be based on vehicle type, range of sensing capabilities and potentially
the environment. As a rule of thumb, for safe operations the vehicle should always have
the possibility to come back to its current state without collision, in other words to move
in a circle. For a small vehicle that can perform a circle with a small radius this is not
as important as for example using the same algorithm on a tanker (which could have
a minimum turning radius in the scale of kilometres). The same parameters needs to be
taken into account for the resolution — a large ship does not need to know the environment
in small details in the size of centimetres for planning a feasible path, while for a small
vehicle knowing the map in great detail might help it navigate through small spaces.

The approach has, as it share many properties with A*, a drawback which is that it
will always expand the unexpanded state with the lowest cost (path cost + heuristic cost).
This makes it prone to get stuck in local minimas, until the whole area of the local minima
is explored until it finds a path around it. A potential way to overcome this could be to
add a wave-propagation from the goal to calculate the heuristic based on the environment
instead of only the Euclidean distance [139, 140].
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5
Vehicle Tracking and Following under

Kinodynamic Constraints

The previous chapter described path planning under motion constraints in the traditional
way of finding a path from Xstart to Xgoal. This chapter will instead focus on an objective
driven path planner with the goal to reduce the distance between a leader vehicle (AUV)
and a follower (CNA) from the follower’s point of view.

This has previously been performed using different combinations of Proportional In-
tegral Derivative (PID) controllers [94, 149, 150, 151]. However, such controllers assume
that the following vehicle has a higher degree of motion capabilities in terms of control-
ling the vehicle’s speed than the leaders. This is not always the case. Fig. 65 depicts
a scenario where a surface vehicle equipped with engines forces it to drive continuously
at a higher speed than the AUV can be seen. In such cases, classic control methods as
PID controllers might not be the most efficient use or option, as the follower cannot be
controlled enough to stay on top of the vehicle and will therefore overshoot and act unpre-
dictable. Instead this chapter will suggest a path planning approach to following a leader.
The aim for the planer is to take the motion constraints into consideration while finding a
path which minimises the distance between the vehicles.

This path planner takes a discrete set of feasible trajectories into consideration to plan
a path which, under the circumstances, minimises the distance between the two vehicles
over time. It takes some elements from chapter 4 into consideration, such as a search tree
based on exploration using a pattern.

The benefits of having a surface vehicle in proximity is that it can enable more reli-
able and higher speed communication, acoustic and in certain optimal conditions, optical.
Section 5.4 will describe a scheduler for transmission times to improve the localisation
on receiving AUVs. The scheduler is based on estimating the path of both the leader and
follower over time to determine when the most beneficial Time of Launch (ToL).

5.1 Leader Position Estimation Based on Kinematic Model

To follow a submerged vehicle, acoustic communication is needed for the leader (AUV)
to update the follower (ASV). Acoustic communication is however expensive and often
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Fig. 65: Cooperative mission between C-Worker 5 (equipped with engines which forces
it to drive continuously at a minimum speed) and Autosub Long Range (a slow moving
vehicle at roughly 0.5 knots).

sparse1. Therefore, continuous and reliable updates from the leader is not always realistic.
Instead the follower needs to be able to estimate the position of the leader vehicle over
time in-between received updates.

The work presented here is opportunistic and event driven. That is, it does not assume
any a priori information about the leader. Instead, it will wait or loiter until a leader
has been observed, through receiving an acoustic message from a leader which includes
its state estimate, and after that start to follow the vehicle. This has the benefit that no
pre-mission coordination between vehicles is required and ensures that that the follower
vehicle can work continuously in an area and wait for a leader to appear. When infor-
mation from a leader vehicle is received (from any form of communication) the follower
will update its target model which contains the leader’s estimated position, the time of
transmission, velocity, orientation and/or target waypoint. Using this data the follower
can estimate the target’s position over time. While the communicated data does not nec-
essarily give a precise representation, especially long-term with multiple waypoints or if
transmitted during turns (without including waypoints), it is typically the type of infor-
mation that an AUV would transmit periodically2.

To estimate the target (T ) vehicle a simple kinematic model is used. The notations
used are the same as in Fig. 34. If tracking is in 2D (49) is used. If a waypoint is provided
this is used to calculate the yaw (ψ) value and if not, the vehicle’s transmitted value is
used. The same notations as in Fig. 34 are used, however Vxy is the speed in the plane

1As described in section 2.2
2This is based on SeeByte’s autonomy framework Neptune [152]
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and ψ is the estimated direction the vehicle is travelling at.

T (∆t) =

[
1 0 ∆t ∗ Vxy 0

0 1 0 ∆t ∗ Vxy

] 
Tx

Ty

cos(Tψ)

sin(Tψ)

 (49)

If tracking is performed in 3D equation (50) is used.

T (∆t) =

1 0 0 ∆t ∗ Vxy 0 0

0 1 0 0 ∆t ∗ Vxy 0

0 0 1 0 0 ∆t ∗ Vxy





Tx

Ty

Tz

cos(ψ) ∗ cos(θ)
sin(ψ) ∗ cos(θ)

sin(θ)


(50)

If the follower is aware of the target’s current waypoint it can estimate when the leader
will arrive at that position as in equation (51).

TWP
t =

||TWP − T (0)||
V

(51)

If no new messages have arrived at time TWP
t the leader will assume that the vehicle

is static at the waypoint and use this as the position estimate until new data arrives. This
is to safeguard the follower from continuing in a direction which would be opposite the
leader’s, causing the distance between them to grow faster and out of communication
range earlier. It is therefore better to try to be close to the last estimated position of the
leader until new data arrives.

5.2 Leader-follower Path Planner

The implementation of the leader-follower planner has some similarities to PBHA*, pre-
sented in chapter 4. Much like it, the presented path-planner for following a leader uses
priority based expansion of a search tree. This is performed by expanding a motion pattern
to the un-expanded state in the search tree with the lowest cost, see Fig. 67, itteratively
until a termination condition is achieved. To this point, the algorithm is very similar
to PBHA*, however it differs in multiple aspects. First, it uses a different type of cost
function to prioritise nodes for expansion in the search tree. Second in this planner, the
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5.2. Leader-follower Path Planner

C-Space is not used as a discrete grid as this would deny the possibility of a plan to re-visit
the same cell which for a leader-follower scenario might be desirable. Third, the termi-
nation condition is based on finding a path for a specified duration instead of reaching a
goal configuration or region.

Fig. 66: Flowchart for kinodynamic leader-follower path planner. The planner updates
the path based on new information received from the leader.

As can be seen in the algorithm’s flowchart in Fig. 66, the planner is driven by updates
from the leader. The algorithm to plan the path can be seen in Alg. 5.

Algorithm 5 Kinodynamic Path Follower
Input:
Xstart : start configuration
T : Target (Leader)
O : Obstacles, exclusion zones etc.
∆goal : Length (time) of solution
Φ : Motion pattern

1: procedure KPF
2: openList = PriorityQueue()
3: openList.insert(Xstart)
4: while openList do
5: qexp = openList.pop()
6: if qexp.time ≤ ∆goal then
7: return qexp
8: for each Φi ∈ Φ do
9: q̂new, V alid = expand(qexp,Φi,O) /* See Alg. 4 */

10: if accepted then
11: openList.insert(f(q̂new), q̂new)

12: return ∅

Prioritising which node to expand is based on the average between the follower and
leader over time. This is performed by estimating where the leader would be at the same
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(a) (b)

Fig. 67: A motion pattern as in (a) is applied iteratively to the state in the tree which has
the lowest cost as in (52) until the termination condition is reached.

time as the follower would reach a new configuration. To obtain the average distance
between the vehicles we summarise the distance between the leader and the follower
along the path that leads to the current estimation to get a summed distance. The summed
distance is then divided by the time it takes to execute the path. This can be seen in
equation (52). In the equation f(q) is the current evaluated state, n is the depth of the
state and T̂i is the estimated position of the target at the same time the leader is expected
to reach state qi (T̂i = T (qtimei − qtime0 )).

f(q) =

∑n
i=1(||qi − T̂i||)

n
(52)

The algorithm is continuously expanding until a state is opened which would take
∆goal seconds to reach. As the algorithm always prioritises expansion of the lowest cost
node (lowest average distance between leader and follower), a state which is opened and
fulfils the termination condition is the best possible solution to be found under the current
circumstances. An example of how Alg. 5 is applied with a pattern, as seen in Fig. 67a,
can be seen in Fig. 67b. In this simulation the termination condition is fulfilled when a
state is opened which has a depth of 10 in the search tree.

As there may be potential obstacles (including other vessels or too shallow water) or
exclusion zones this should be taken into account while planning a path. As in PBHA* a
collision check is performed as shown in Fig. 54 before a potential branch of the pattern
is added to the search tree. An example of how the planner finds feasible and safe paths
around an exclusion zone can be seen in Fig. 68.

5.3 Results

The path will be highly dependant on both the provided motion pattern of the follower
(ASV) and the estimation of the leader (AUV). This has been tested with various configu-
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Fig. 68: The follower plans a path to avoid the exclusion zone (red circle) while aiming
to minimise the distance between to the leader.

rations when it comes to the freedom speed and turning radii of the follower. An example
when the follower has a very limited set of actions can be seen in Fig. 69.

Fig. 69: The follower (ASV) vehicle’s path while driving continuously at 5m/s while
the leader (AUV) is has a constant speed of 2 m/s. The follower is able to turn with
25 or 50 metre radius and plans in steps of 10 seconds per motion. This results in a
path that performs sinusoidal curves and encircles the leader. The follower estimates the
leader’s position over time based on the acoustic messages containing information about
the leader’s position, velocity, heading and goal position.

The same scenario as in Fig. 69 has been tested with various configurations of freedom
for the follower. These are described in table 9. It comes to no surprise that the average
distance between leader and follower decreases with the higher number of branches in the
motion pattern and the amount of discrete speeds that the follower is able to use.
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Kinodynamic Path Follower - Results ASV following AUV
Turning radius
(m)

number of
branches per
pattern

possible speeds for
follower (m/s)

Avg. dist between
leader and follower
(m)

25, 33, 50, 100 9 0, 1, 2, 3, 4, 5 5.5
25, 50 5 2, 2.5, 5 7.20
25, 50 5 0, 5 17
25, 50 5 2.5, 5 19.1
25, 50 5 2.5 24.2
25, 50 5 2 32.2
25, 50 5 5 33.6

Tab. 9: Path following comparison - different motion constraints. The leader performs the
lawnmower shown in Fig. 69 with a constant speed of 2m/s.

In table 9 we can observe a row where the follower has the same speed as the leader
(2m/s) and the resulting path becomes similar to what would be achieved by a Proportional
Integral (PI) controller such as in [94, 153] as the follower vehicle will aim to drive in the
same direction as the leader until the leader communicates that it has changed direction
and waypoint. The follower then needs to do a turn which results in falling behind the
leader. This is because if they drive at the same speed it can never catch up with the
current estimates but instead, when the leader changes direction once more, the follower
can cut a corner to decrease the distance by a bit. A subset of the path from this scenario
can be seen in Fig. 70.

5.3.1 Results 3D

The same algorithm can easily be applied to any dimension by changing the supplied input
to be in the required C-Space. An example has been performed in R3 where a follower
vehicle able to move with a similar pattern as in Fig. 53 is used to follow a surveying
AUV. The resulting path, as seen in Fig. 72a and 72b, becomes much like a helix around
the target. Similar results are achieved when the target is only going downwards, in
which case the follower will perform a spiral motion downwards as seen in Fig. 72c. In a
real life maritime environment, these types of leader follower scenarios probably do not
have much use but nonetheless, it shows that the same algorithm is adaptable to multiple
dimensions.
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(a) Zoomed (b) Whole scenario

Fig. 70: When the follower operates at the same speed as the leader it tends to fall behind
after the leader changes direction but can take the next direction change as an opportunity
to catch up.

(a) 3∗Leader Speed (b) 0.5∗Leader Speed

Fig. 71: Example of different paths created based on the follower’s speed compared to the
leader.
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(a) Helix - Side view

(b) Helix - Front view (c) Spiral - Side view

Fig. 72: The leader-follower path planner in R3. The follower creates a helix like pattern
to reduce distance over time to the leader.
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5.4. Selection of ToL to Improve Acoustic Localisation

5.4 Selection of ToL to Improve Acoustic Localisation

The leader-follower path planner presented in this chapter would be suitable to use as
CNA to support a submerged AUV. This is as it ensures the creation of feasible paths
while maintaining the goal to minimise the distance to the follower over time. This should
improve the quality of the acoustic signal3 and hence making the acoustic communica-
tion more reliable. Acoustic communication can be used for localisation as described in
chapter 2 where it can be observed how the found position is effected by different geo-
metric relationships between the transmitter and receiver. The most beneficial geometric
relationship between the transmitter (CNA/follower) and receiver (AUV/leader) is depen-
dent on the localisation method. In this section two methods will be considered, EKF and
NLS. A brief summary of how these methods can be improved by the geometric relation
ship can be seen below or in chapter 2.

• For NLS the optimal configuration is when the transmitters are evenly spread (angle
wise) around the receiver [28, 72, 154].

• For EKF the closer a transmission is located to the semi-major axis of uncertainty
from the covariance matrix, the greater the reduction of uncertainty will be [29, 57].

In order to consider a planning approach as presented in this chapter it will create
a path to follow a target and hence now the estimated geometrical relation between the
vehicles over time. This is as it knows where the follower will be and can estimate the
position of the leader based on the kinematic models in equation (49) or (50). Assuming
that a Time-Division Multiple Access (TDMA) protocol (see Fig. 73) is used to con-
trol at which time-slot a vehicle can transmit data from, an informed decision could be
made about when to transmit a message used for localisation at the time in which the
geometrical relationship should be more useful.

Fig. 73: TDMA is used to divide time among units to reduce message collision on a
shared channel such as acoustics in water. A: Time is divided into frames. B: A frame
consists of time slots. C: A time slot is the time a platform has the possibility to transmit
and has an optional guard time in the beginning and end to avoid collisions from other
time slots.

This section presents a framework to select the times for transmission, ToL, in a way
which over time should reduce the localisation error on receiving platforms more than the
conventional way where messages are transmitted periodically.

3As stated in section 2.2 the signal strength decreases with the distance travelled
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5.4.1 Selection of Transmission Time

The outline of the presented planner for transmission time can be seen in Fig. 74. It is
based on updating estimations of the AUV based on what information it transmits. The
information is the same as what the leader transmits during the leader-follower scenario,
with an added 2× 2 covariance matrix if the localisation method used is EKF. The CNA
is also assumed to know its predicted plan ahead in time. Based on both the AUV and the
CNA’s estimated positions over time, this information is being sectioned into sets based
on when the CNA is allowed to transmit within the TDMA.

Fig. 74: The selection of ToL planner is a layer used to find transmission time for acoustic
localisation message based on positional estimates of the vehicles and the TDMA.

The framework uses the different sections containing the geometrical relationships
between the vehicles to find a set of transmission times which, based on the vehicle es-
timates, should reduce the error the most. The selection method is based on finding a
combination of 1 estimate from each set which minimises a cost function. This cost func-
tion differs based on which localisation method the AUV uses.

5.4.1.1 Extended Kalman Filter Cost Function

The motivation behind the cost function for EKF is explained in section 2.6. The cost
function for each geometrical relationship is the residual angle from the vector between
the vehicles and the semi-major axis of uncertainty of the ellipse derived from the trans-
mitted covariance matrix.

5.4.1.2 Nonlinear Least Squares cost function

The cost function for NLS is based on what has been shown earlier — the more evenly
(angle-wise) the transmission positions are spread around the receiver — the better the
solution should be. The NLS problem needs more measurements than the dimension of
the solution is in to find a unique position. This cost function is based on the minimum
amount of measurements required, which for a solution in R2 is 3. Based on this, a cost
function which the lowest cost while the 3 different geometrical relationship is equally
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Fig. 75: The polar angles between the AUV an the CNA over time. These angles can be
used in equation (55) to estimate how well the localisation algorithm on the AUV would
perform. The 3 different CNAs does not necessarily be different vehicle but can also be
the same, but at different times.

spread out, and the worst when the relationships is such that they all or on the same axis.
The function to minimise can be seen in equation (53).

a, b, c = argmin(f(α, β, γ)∀α∈A,β∈B,γ∈C) (53)

Equation (53) returns the best configuration from each of 3 sets. This is based on eval-
uating the different combinations (one from each of 3 sets) as in equation (55). Equation
(55) uses equation 54 which takes the 3 estimated polar angles (a1, a2, a3) between the
AUV and the CNA as parameters.

f(α, β, γ) = |cost(α, β, γ)− cost(β, α, γ)|

+|cost(β, α, γ)− cost(γ, α, β)|

+|cost(γ, α, β)− cost(α, β, γ)|

(54)

cost(a1, a2, a3) = CW (a1, a2, a3) + CCW (a1, a2, a3) (55)

In (55) CW and CCW return the minimum residual angle from a1 in the clock-wise
respective counter clock-wise direction to a2 and a3. An example of how these angles can
look like can be seen in Fig. 75.

An example of the cost in different configurations of angles can be seen in Table 10
and in Fig. 76. A visual example where three sets of angles are evaluated to find the
solution which minimise (53) can be seen in Fig 77b.
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α β γ cost(α, β, γ)
0 2π/3 −2π/3 0
0 π/2 −π/2 π
0 π/6 −π/2 7π/3
0 π/6 −π/6 3π
0 0 0 6π

Tab. 10: Example of the cost (equation (54)) between the three angles α, β and γ

Fig. 76: The cost associated with tree angles where one angle is referenced as 0 degrees
in equation (14). It can be seen that the lowest cost is achieved when the 3 angles are
equally distributed as also is shown in table 10.
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(a) The function used to find optimal transmission positions for NLS com-
pares the clockwise and counter-clockwise residual to the other evaluated
angles which the estimated positions of the vehicles would create. (Left)
evenly distributed angles create good conditions to solve the NLS prob-
lem, while (right) is a worse setup to solve the problem as can be seen in
Fig. 19.

(b) 3 Sets of the angles from geometrical configurations between an AUV
and an ASV. The thicker lines show the 3 configurations which create the
most even distribution between landmarks, and hence should produce the
most accurate result.

Fig. 77: The geometrical relationship that produces the lowest error for the trilateration
problem is when the angle (relative direction) of the received messages’ positional origin
are as evenly distributed around the receiver as possible, as shown in Fig. 19.
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5.4.2 Paths Effect on Variety of Geometrical Relationship

The presented method of planning a path in a leader-follower scenario during different
motion constraints, such as different speeds, can lead to a large variation of the geometri-
cal relationship over time. Other methods where different types of P,I and/or D controllers
[94, 149, 150, 151] have been used to keep the follower vehicle on top of the leader might
reduce the variance in the geometrical relationship. An example of how the variation over
time can be for distance between the vehicles and the relative angle can be seen in Fig. 78.
In this figure, two cases are presented, the first (top) is when the follower has a constant
speed which is twice the leaders. In the second case (the bottom) both vehicles operate at
the same speed (an example of such a scenario can be seen in Fig. 70).

Fig. 78: Different speed of the leader and follower vehicle increases the variance in the
geometrical relationship. This can be used to reduce the error in acoustic localisation.

As can be seen in the second case, where the vehicles operate at the same speed, there
is a low variance in the geometrical relationship over time compared to when they operate
at different speeds and the follower needs to vary much its path to stay close to the leader
(see Fig. 71 for an example of such a path).

In the case where the two vehicles operate at the same speed and the geometrical
relationship over a time-slot can be expected to be rather static there might not be much
improvement by selecting the transmission time. In the first case there is much variance
over time, so the variety of geometrical relationships to select from is large, and as such
the improvement in the receiver’s localisation should also be able to be improved more.
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5.4.3 Results Using AUV Sirius Dataset

To test the selection of ToL algorithm the dataset collected by AUV Sirius was used.
It has been compared to the conventional way of transmitting periodically (static time
within a time-slot). For the comparison a TDMA with a considered slot length of 20
seconds and two frames are examined (one each for CNA and AUV Sirius). The AUV
updates the transmitter every 4:th frame (160 seconds period), and hence the CNA needs
to use proposed ToL selection method to find 4 transmission times. For the comparison a
moving transmitters (ASVs) is considered where it has different objecives

The ASV and distance measurements are simulated. The noise in the simulated dis-
tance measurements has a Gaussian distribution with a σ of 2.5 and 5 metres. The static
transmission times within the TDMA slot are 0, 10 and 19 seconds. The different sce-
narios evaluated (which can be seen in Fig. 79) are: an ASV performing a lawnmower
survey, circling the area and the leader-follower path planner presented in this chapter.

The average error on the AUV is reduced in all simulated cases as seen in Table 11
and 12 using out adaptive selection of ToL compared to the static ToLs. In all cases the
transmitting platforms have no prior knowledge about the AUV. They are adapting based
on the incoming acoustic messages containing the AUV’s estimated position, heading
and velocity. When the localisation method is EKF, a 2×2 covariance matrix is included.
In the table it can also be seen how the cost function performs by selecting the estimated
best time of transmission compared to how it performs using static times. It can be seen
that for the adaptive approach, the cost function as well as the navigational error on the
AUV is the lowest, no path smoothing was performed on the AUV. It can be seen that
a lower cost function in general leads to a lower positional error on the AUV. Which
supports the proposed cost functions usability. In the scenarios where the variance in
the polar angle between the vehicles is small (circle and lawnmower) the positional error
grows larger than the leader-follower scenario where the polar angle between the vehicles
has a larger variance over time.
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Fig. 79: Example of different paths and configurations in the evaluated scenario. Follower
is the path planner presented for the leader-follower scenario.
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Extended Kalman Filter : Leader-follower
ToL Adaptive ToL first (t=0) mid (t=10) last (t=19)

Distance measurement error [m] = N (0.0, 2.5)m
AUV Sirius Error (Avg [m]) 5.2 8.1 7.9 8.3

Cost function (Avg) 0.09 0.79 0.77 0.82
CovMat Max Axis 1 std (Avg) 2.66 2.94 2.90 2.98

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 8.5 10.0 9.6 9.7

Cost function (Avg) 0.09 0.81 0.78 0.74
CovMat Max Axis 1 std (Avg) 2.65 2.96 3.01 2.95

Monte-Carlo Gradient Descent (NLS) : Leader-follower
ToL Adaptive ToL first (t=0) mid (t=10) last (t=19)

AUV Sirius Error (Avg [m]) 5.6 8.6 7.9 7.7
Cost function (Avg) 1.98 5.50 5.13 5.46

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 8.8 9.8 10.4 11.9

Cost function (Avg) 2.38 5.73 5.22 5.26
Extended Kalman Filter : Circle

Distance measurement error [m] = N (0.0, 2.5)
AUV Sirius Error (Avg [m]) 10.8 12.0 11.5 12.1

Cost function (Avg) 1.39 1.43 1.42 1.41
CovMat Max Axis 1 std (Avg) 5.39 5.39 5.39 5.39

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 11.7 12.8 13.0 12.7

Cost function (Avg) 1.39 1.43 1.41 1.40
CovMat Max Axis 1 std (Avg) 5.37 5.38 5.38 5.38

Monte-Carlo Gradient Descent (NLS) : Circle
Distance measurement error [m] = N (0.0, 2.5)

AUV Sirius Error (Avg [m]) 14.0 19.6 14.2 14.6
Cost function (Avg) 11.5 11.7 11.5 11.5

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 23.7 29.23 32.8 23.7

Cost function (Avg) 11.6 11.7 11.7 11.6

Tab. 11: The correlation between the cost function and the error on the AUV. The lower
the cost, the closer a transmission from a position on a more beneficial polar form the
AUV, as such a lower cost should result in a lower error which can be seen. The TDMA
window considered is 20 seconds long, hence the first, mid and last transmission is sent
at t=[0, 10, 19] and the adaptive approach presented selects a time between 0 and 19 for
transmission. The error from DR is 195.4 metres.
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Extended Kalman Filter : Lawn mower
ToL Adaptive ToL first (t=0) mid (t=10) last (t=19)

Distance measurement error [m] = N (0.0, 2.5)m
AUV Sirius Error (Avg [m]) 5.9 7.6 6.9 7.0

Cost function (Avg) 1.32 1.38 1.37 1.35
CovMat Max Axis 1 std (Avg) 4.86 4.87 4.87 4.87

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 8.8 9.9 10.3 8.9

Cost function (Avg) 1.32 1.38 1.36 1.35
CovMat Max Axis 1 std (Avg) 4.8 4.8 4.8 4.8

Monte-Carlo Gradient Descent (NLS) : lawn mower
Distance measurement error [m] = N (0.0, 2.5)

AUV Sirius Error (Avg [m]) 7.3 23.6 18.3 23.6
Cost function (Avg) 11.3 11.47 11.38 11.32

Distance measurement error [m] = N (0.0, 5.0)
AUV Sirius Error (Avg [m]) 29.0 44.4 41.0 30.6

Cost function (Avg) 11.21 11.37 11.32 11.25

Tab. 12: Continuation of Table 11.
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5.5 Summary

This chapter have presented two algorithm related to improving cooperative navigation
between marine robots. The first one is a path planner for a leader-follower scenario. This
planner takes motion constraints (including speed) into consideration to plan a path for
the follower to reduce the average distance between the leader and the follower over time.
This has great benefits in scenarios where the vehicles have different motion capabilities.
An example is when a leader is a slow moving vehicle and the follower has a minimum
speed which exceeds the leader’s maximum speed. In such cases, classic control theory as
PID controllers fail to supply a reliable solution. The proposed method is a priority based
expansion of a search tree. Expansion of a state in the tree is based on both the motion
constraints and the velocity of the follower. The proposed algorithm shows reliable real-
time planning capabilities for cases including when the follower operates at; lower, same
and faster speed than the leader. The algorithm is used for a single-leader, single-follower
scenarios. Having more leaders would not be impossible as the cost function could be the
sum of the cost for all leaders. This would however make the follower follow the estimated
middle point between all leaders. Another approach could be to add a growing reward cost
when a leader is not the one being followed, so that either a travelling salesman problem
could be solved to select which leader to focus on or to always follow the leader with the
highest reward function.

The second part of the chapter is a ToL selection layer which runs on top of a path
planner. By estimating both the transmitter’s and receiver’s position over time, strategic
transmission times (and hence positions) for acoustic localisation messages can be chosen.
By selecting a ToL in which the geometric relationship between the vehicles is estimated
to be the most beneficial a reduction in positional error on the receiving platform can be
achieved compared to periodic transmission strategies. This proposed adaptive method
is compared towards static transmission times of acoustic localisation messages within
a time window and shows to at worst perform equal to static transmission times. In
most cases the adaptive approach has reduced the error on the AUV by up to 35%. As
this approach does not need to alter the path or behaviour of the transmitting vehicle in
anyway more than control when to transmit a message it would be beneficial to use as a
scheduler on acoustic transponders without demanding much computational power. This
does however at the moment not take the depth of the AUV into consideration and the
results presented is based on shallow operations.
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6
Spatio-temporal Path Planning to
Improve Range-only Localisation

“I may not have gone where I intended to go,

but I think I have ended up where I needed to be."

- Douglas Adams

This thesis has to this point presented various path planning algorithms and acoustic
localisation methods, along with ways to improve this based on estimation of the geo-
metric relationship between transmitter’s and receiver’s position. The previous chapter
presented a path planner for multi-vehicle scenarios and a planner to improve acoustic
localisation by selection of transmission time. In that chapter they are considered to be
independent of each other. This will have its benefits as the CNA can perform its own
survey and use the ToL planner to improve localisation on other AUVs. This chapter will
present an approach on how these can be intertwined from a path planning perspective.
It will present a path planner for a single CNA in which the objective is to act purely to
support submerged AUVs with acoustic localisation messages.

6.1 Planning to Improve Localisation

A spatio-temporal planner plans both in space and time. Planning in both these dimen-
sions are beneficial for the purpose of reducing the error and uncertainty related to acous-
tic localisation methods. Previous planners for CNAs to position themselves at beneficial
geometric relationships to AUVs have been used considering periodical transmission, and
hence planning only in space. Planners such as the one shown in Fig. 32 (see section 2.9)
presented by Bahr et al. [29] samples the whole reachable region of the CNA to select the
best position1 as the next waypoint for transmission. Munafo et al. instead use a constant
speed vehicle and include external forces (e.g. currents) to sample points on the perimeter
of a circle (radius and offset depending on vehicle speed and external forces) to calculate
the determinant of the FIM (equation (20)) and select the most informative position as

1Based on EKF, the transmission position should be as close as possible to the semi-major axis of
uncertainty.
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the next waypoint [71]. Both these plan for a single step ahead in time, while the pre-
sented planner looks over a longer horizon to find a set of waypoints along with times for
transmission which are aimed to reduce the uncertainty over time. Looking at multiple
steps ahead in time can prevent the CNA from e.g. choosing a next transmission position
which also will put the CNA in a position where it will fall behind the AUV and limiting
its options for the next transmission [29]. Planning for multiple steps can therefore lead
to reducing the uncertainty to a greater extent — as a combination of waypoints which
should reduce the uncertainty even greater can be found.

Instead of sampling points and selecting the most beneficial one, other approaches
have used parameterised trajectories. This includes zigzag[22, 155], circles [22, 57] and
diamonds/squares[155]. However, these do not consider the estimated movement of the
AUVs. The movement pattern is more or less static and pre-defined instead of adapting to
the estimation of the AUVs. Dynamic Programming [57] and Markov Decision Process
[89] have been implemented to plan the path of a CNA to aim to transmit messages at the
semi-major axis of uncertainty of the AUV, This shows reduced uncertainty compared to
more static CNA trajectories.

Fig. 80: Different risk zones can add various penalties while planning the path of a CNA.
This is to reduce risks of potential collisions if the AUV surfaces and to keep the vehicles
within communication range.

Safety is a concern for cooperative missions like these; vehicles should avoid actions
which increase the risk for collision. As such, the CNA is encouraged to operate within
a minimum and a maximum distance from the AUV to avoid collision and to stay within
communication range by heavily penalising paths outside the acceptable boundaries. This
is considered by Hudson et al. who apply penalties depending on inter vehicle distance
while using look-ahead (planning a few steps ahead) and pre-decided trajectories to plan
a path for the CNA to support multiple AUVs by adding the best of the trajectories to
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6.2. Path Planner to Improve Acoustic Localisation

the search tree in each iteration [156]. The method can be used both with pre-planned
missions on the AUVs or as a response to received acoustic messages. Similar penalties
are also used in [89] and [57]. An example of such regions, which are applied in the
presented algorithm in this chapter can be seen in Fig. 80. The penalty function can be
constructed in various ways, for example it can be based on the depth of the AUVs such
that the penalty is the lowest in a region which is at a distance such that the slant angle
towards the AUV is large by using work by Chen et al. [91, 70].

6.2 Path Planner to Improve Acoustic Localisation

The presented planner in this chapter is a hybrid between priority based expansions (such
as A*) and sampling-based exploration (as RRT). The flowchart of the algorithm can be
seen in Fig. 81 and the pseudo-code in Alg. 6.

The planner applies the same expansion process as other priority based search trees
presented in this thesis. It expands a tree until a termination condition has been reached.
The order the tree expands its nodes in is based on a cost assigned to each node. The
termination condition is when the planner expands a node with a specified depth ω (in
the tree). This represents finding a path consisting of ω waypoints and is returned as the
plan for the CNA to follow until new information is received which might update the
plan. When a node qexp is expanded, its offsprings’ cost are added with the cost of qexp.
The cost function is based on the residual angle between the CNA and AUV to the semi-
major axis of uncertainty for the AUV. Hence the cost can never be less than 0. As a
cost of a node can never be lower than its parent, always expanding the lowest cost state
ensures that when the termination condition is reached (node’s depth= ω) it cannot be
improved under the current parameters of the algorithm. The cost function is based on
that the receiving AUVs using EKF as a method of localisation. It has been described
earlier in section 2.6 and 5.4 that the geometrical relationship between transmitter and
receiver which reduces the uncertainty by the most is when a transmission occurs along
the semi-major axis of uncertainty [76, 29, 57]. This axis is derived from the covariance
matrix on the AUV. As such the CNA needs to receive the 2× 2 covariance matrix from
the AUVs along with data to be able to estimate their positions over time by using the
same kinematic equations presented in section 5.1.

There are two events which require the algorithm to calculate a new list of waypoints.
This is either by receiving an update from an AUV or if the last waypoint of the current
list of waypoints is reached. To run the algorithm the following are required:

• Xstart - current state of the CNA and its knowledge about the AUVs (XTargets).

• ω - number of waypoints to plan for (depth of a state in the tree).

• N - number of random-sampled states to add to a node under expansion.
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Fig. 81: The presented path planner is a combination of priority- and sampling-based
methods to find a path consisting of a defined number of waypoints and optimal time for
a CNA to transmit localisation messages to AUVs.

Algorithm 6 Sample-Based Transmission Waypoint Planner
Input:
Xstart : start configuration
ω : Number of waypoints to find
N : Number of expansion
P : Number of expansions after pruning

1: procedure PLANNER

2: Open = priority_queue([Xstart])
3: while Open! = ∅ do
4: Xopen = Open.pop(0)
5: if Xdepth

open == ω then
6: return Xopen

7: X̂ = Expansion(Xopen, N, P )

8: for each x ∈ X̂ do
9: Open.add(x)

• P - prune the list of N newly expanded states to only keep P .

114
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As stated, the algorithm is a spatio-temporal planner. The spatio part relates to space
and the position of a planned waypoint. The temporal part of the planner comes from
selecting the ToL within the TDMA in which the estimated relationship from the CNA’s
waypoint is as close as possible to the semi-major axis of uncertainty on the AUVs. This
selection process can be seen in Fig. 82 and a description of TDMA in Fig. 73.

6.2.1 Expansion of States

The expansion procedure of a state is sampling-based. The algorithm for expansion is
described in Alg. 7. It is based on sampling a set Ψ consisting of N random positions
in a region around Xexp. The region in which the sampling takes place is dependent on
the CNA’s maximum speed, the current time and the latest time the CNA can transmit
a localisation message from within its next TDMA slot. From the current time and the
latest time possible to transmit we get a duration. By multiplying this duration with the
maximum speed we get a distance, which corresponds to the radius of the circle around
Xexp in which the sampling takes place. This is to ensure that a sampled position is
reachable before it needs to transmit an acoustic message from it. A visualisation of the
expansion procedure can be seen in Fig. 82.

Algorithm 7 Expansion Step
Input:
Xexp : Configuration to expand
N : Number of expansions
P : Number of expansions after pruning

1: procedure EXPANSION

2: Y = priority_queue()
3: Ψ = Xexp.sample(N)
4: for each Ω ∈ Ψ do
5: ev = priority_queue()
6: T = TDMA(Xexp,Ω)
7: for each t ∈ T do
8: σ =

∑XTargets
exp

τ ζ(Ω, τt) + δ(Ωpos, τ post )
9: ev.add((Xexp,Ω

cost=σ
t ))

10: Y.add(ev[0])

11: return Y [0 : P ]

Below the functions and equations used in Alg. 7 are described,

• TDMA(Xexp, ψ): This function returns a set (T ) of discrete (1 second interval
such that T = [t0, t1, .., tn−1, tn]) times based on the earliest time (t0) the CNA
could transmit from XPos

New. t0 and tn is described in (56) and (57). TDMA0
n+1 is

the earliest time in the next TDMA slot that the CNA is allowed to transmit from.
A visual representation of this can be seen in Fig. 82.
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t0 = max(XToL
expanding +

Distance

CNAv_max
, TDMA0

n+1) (56)

tn = TDMA0
n+1 + TDMASlotT ime (57)

• ζ(Ω, τt) is the residual angle Θ (58) which is in the range [0,
π

2
]. θ is the dot prod-

uct between the vector of the semi-major axis of uncertainty of the ellipse which
represents the estimated covariance matrix and the vector between position Ω and
the estimated position of the target at time t, (

−−−→
Ω τ post ). The estimated position is

calculated based on the same kinematic equations as presented in section 5.1.

Θ = min(θ, ||π − θ||) (58)

• The sampling function X.sample(N) returns a set of N new reachable states from
the position of state X . The random sampled points are within the distance tn ∗
CNAv_max

• The penalty function δ(Ωpos, τ post ) adds a penalty to a state if its waypoint is too
close or too far from the AUV under evaluation. This is to reduce the risk of colli-
sions between vehicles and aims to stay within communication range. The penalty
is based on 4 different zones: Critical, Risk, safe (None) and if outside of commu-
nication range (Comms). This can be seen in algorithm 8 and a visualisation of the
different regions can be seen in Fig. 80.

Algorithm 8 Inter vehicle distance based penalty
Input:
Ω : Position of CNA waypoint
τ : Estimated position of AUV

1: procedure δ
2: ∆ = ||Ω− τ ||
3: if ∆ < λCritical then
4: return ΛCritical

5: else if ∆ < λRisk then
6: return ΛRisk

7: else if ∆ > λComms then
8: return ΛComms

9: else
10: return ΛNone

After the N new states have been added to the list Y of sampled expansions, the list
is pruned to only keep the P lowest cost new states. This is performed as to reduce the
search space.
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(a) A sampled position (XNew) is evaluated to find the optimal ToL which is
the t that results in the lowest Θt. Θt is the residual angle between the AUV’s
major axis of uncertainty and the vector between the estimated positions of the
vehicles ((58)) in the time window where the CNA is allowed to transmit.

(b) The optimal time to transmit from XPosition
New is the time

which has smallest Θ.

Fig. 82: The expansion is performed by randomly sampling a new position and then
evaluating when within the TDMA slot the optimal ToL for a ranging message would be.

6.3 Computational Efficiency vs Optimallity

The choice of using elements from sampling-based path planning is to reduce the search
space enough to run the algorithm in real-time. While it is possible to expand a com-
plete search tree to find the optimal solution, which is estimated to reduce the uncertainty
the most, all reachable lattice points with all possible (whole seconds) ToL have to be
considered in the search space. One iteration with a maximum reachable distance r me-
tres creates a grid of all reachable lattice points as seen in equation (59) [157]. This is
visualised in Fig. 83.

N(r) = 1 + 4 ∗ r + 4
r∑
i=1

(
√
r2 − i2) (59)

By extending (59) to include all possible ToL at respective lattice points it results in all
possible states for each iteration to achieve the optimal position and transmission time.
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6.3. Computational Efficiency vs Optimallity

Each iteration expands the search tree by O(T ), where T is the time until latest possible
ToL, nodes as seen in (59). To plan an optimal path of M waypoints the number of
expanded nodes would be O(T )M . This is in the case where the maximum speed is
considered to be 1 m/s.

O(T ) =
T∑
t=1

(T − t) ∗N(T − t) (60)

O(T ) grows exponentially, while the proposed algorithm explores between N and
N ∗ T and expands the search tree with the P most promising states each iteration. As
such to evaluate all possible paths to find the optimal solution would be of many orders
magnitude larger than the proposed approach. This reduction of the search space enables
real-time computation, and as seen in Fig. 86a and 86b, the larger P and N , the better
solution, at the cost of longer execution time.

(a) Lattice points for different radiuses at circles

(b) The number of lattice points grow exponentially with the radius of the
circle

Fig. 83: The number of lattice points represent the possible integer valued positions within
a circle needed to be evaluated to obtain the best transmission position (without consider-
ing time).
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6.4 Results

The presented spatio-temporal path planner has been implemented and evaluated in a
simulated environment using simulated navigational data as well as a navigational data
set from AUV Sirius2. It has been compared to static trajectories using the traditional
approach of periodical transmissions of localisation messages. It shows a decreased un-
certainty and error towards these in all scenarios. As the algorithm can be used with
various parameters an evaluation of these have also been compared. For the presented fig-
ures, the parameters used can be seen in table 13. All simulations were performed using
Python 2.7 on an i7-7820 (2.9GHz) with 16 GB RAM. It is worth mentioning as python is
an interpreted language, the algorithm would achieve a substantial speed-up using a com-
piled version of the code (e.g. C++), enabling it to run with a higher number of samples
and keeping more states after the pruning to be able to achieve better results in the same
execution time or the same results in less time.

Parameter single multi Sirius
TDMA slot time 20 20 20
AUV speed [m/s] 1.5 1.0 0-0.652

P 3 5 5
N 100 50 25
ω 5 5 4

Parameters applied to all presented cases
ΛCritical,Risk,Comms,None 1.0, 0.5, 0.5, 0
λCritical,Risk,Comms 50, 100, 250
CNA max speed 3.0 m/s

TDMA slots 2

Tab. 13: Planning parameters used in simulations.

6.4.1 Single Simulated AUV

To display the path planned by the algorithm when a single AUV is operating can be
seen in Fig. 84a. Part of a simulated survey leg performed by the AUV can be seen
in the figure along with the path planned by the CNA. The path positions the CNA at
a risk free waypoint for transmission. The path planned by the presented approach for
the CNA shows an improved localisation when compared to other methods which can be
seen in Fig. 84b. In the comparison the other methods transmits periodically. It shows
improvement in the size of the ellipse representing the uncertainty, the size of the semi-
major axis of uncertainty as well as the positional error.

2See section 2.8.3
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6.4. Results

(a) The (adaptive) path planned for a CNA supporting 1 AUV.

(b) Navigation error (bottom) alongside error estimates (area of covariance
matrix and maximum axis of covariance matrix) on an AUV using range-only
EKF.

Fig. 84: The path of the CNA using the spatio-temporal path planner to find a path which
aims to transmit along the semi-major axis of uncertainty for a single simulated AUV
performing a survey. It show reduction in all compared metrics to other approaches. The
parameters of the scenario can be seen in table 13. The stars are the waypoints for the
CNA and the ellipses are the estimated covariance, the blue line is the semi-major axis
of uncertainty and the light blue line shows the communication to each vehicle at that
position. The black ellipse represents the initial uncertainty on the AUV.
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6.4.2 Multiple Simulated AUVs

As the path planner is able to handle multiple AUVs, a scenario where the AUVs perform
a survey was tested. The CNA’s path and the AUVs can be seen in Fig. 85a. Just
as for the single AUV a comparison towards the same methods was compared and the
uncertainty and error from this can be seen in Fig. 85b. The proposed approach achieves
a lower overall error and uncertainty compared to the other approaches. In multi-vehicle
scenarios, the vectors representing the major axis of uncertainty might not intersect within
the sampling region. Hence the cost function is the sum of the residual angle and penalty
function for all vehicles. Instead of aiming to minimise the error on one AUV the planner
will strive to minimise the sum of uncertainty on all participating vehicles.
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(a) The (adaptive) path on a CNA supporting two AUVs.

(b) The uncertainty and error on vehicle 0 and 1.

Fig. 85: The path of the CNA using the spatio-temporal path planner to find a path which
aims to transmit along the semi-major axis of uncertainty for multiple simulated AUVs.
It shows reduction in all compared metrics to other approaches. The parameters of the
scenario can be seen in table 13. The stars are the waypoints for the CNA and the ellipses
are the estimated covariance, the blue line is the semi-major axis of uncertainty and the
light blue line shows the communication to each vehicle at that position. The black ellipse
represents the initial uncertainty on the AUVs.
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6.4.3 Dataset - Sirius AUV

A dataset from Sirius AUV performing surveys outside Tasmania have been used to val-
idate the effect of transmission from the planned waypoints. The data used for the EKF
on the AUV integrates orientation and velocity from a DVL along with the simulated
ranging measurements from the CNA. The AUV’s ground truth is considered to be the
localisation obtained from visual SLAM by Mahon et al. [16] combined with USBL.
The paths of both vehicles can be seen in Fig. 87a and the resulting error in localisation
on the AUV is compared to DR, a static beacon, a CNA following the AUV (with same
speed and heading) and a CNA moving in a zigzag pattern which can be seen in Fig. 87b.
The AUV transmits updates to the CNA with its estimated position, heading, velocity and
2-by-2 covariance matrix periodically every 160 seconds. The mean error for the pro-
posed adaptive method compared to others can be seen in Table 14 and in Fig. 86a, where
the average error of the proposed methods is reduced for all simulations compared to the
other methods.

Method Average Error
DR 183.0

Follow 168.6
Static 60.3
Zigzag 36.5

Adaptive 14.9-37.5

Tab. 14: Comparison of the mean error in meters on an AUV between proposed adaptive
path planner and other approaches based on a dataset from AUV Sirius. The proposed
adaptive approach reduces the error significantly by planning a path that aims to transmit
messages from a position which is estimated to be close to the major axis of uncertainty
on the AUVs. For more detailed display of the result of the proposed approach see Fig.
86a.
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(a) The average error on AUV Sirius.

10 25 50 100
0

5

10

N

A
ve

ra
ge

Pl
an

ni
ng

Ti
m

e
[s

]

1
2
5

(b) The planning time depends on the number of expansions and samples.

Fig. 86: The average error and execution time to plan next 4 waypoints (∼160 sec-
onds). Each set of parameters are simulated 10 times. The simulations use a naviga-
tional dataset collected on AUV Sirius combined with the proposed adaptive planning
approach on a CNA. The different bars are the number of nodes saved from an ex-
ploration (The P value in the algorithms and flowchart), N is the number of samples
during exploration. The average error on proposed approach is lower than the ap-
proaches it is compared to, as can be seen in Table 14.
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(a) The adaptive path planning approach running with navigation data
collected by AUV Sirius outside Tasmania, Australia.

(b) The resulting error on AUV Sirius with a range-only EKF, the pre-
sented (adaptive) approach is compared to other approaches and DR.

Fig. 87: A dataset from AUV Sirius combined with a simulated CNA.
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6.5 Summary

This chapter have presented a novel approach to the problem of path planning for the sce-
nario where a CNA supports an arbitrary number of AUVs with distance-measurements
used for localisation. The planner is a hybrid between priority-based expansion of a search
tree with sampling-based exploration. The approach assumes no prior knowledge about
other vehicles. Instead it responds and adapts its path based on incoming acoustic mes-
sages from the AUVs. This makes it a dynamic and versatile approach, as a CNA running
this planner can be deployed in the operational area of the AUVs without needing to be
configured or informed about the AUVs’ objectives and instead will start to support them
when an acoustic message is received. The approach shows a great improvement towards
other mobile CNA’s trajectories. It plans a path a few steps ahead instead of choosing
the next optimal position which could lead to reduced usage in the long run as the vehicle
might fall behind the AUVs. To improve safety and reduce the risk of collision, and loss
of acoustic range, it adds penalties paths which are either in risk of collision or outside
of communication range. We show how using a limited number of samples instead of
the whole search space reduces the time spent for planning enough to achieve real-time
operations.
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7 Conclusions

This thesis presents path planning methods for cooperative robotic scenarios in the mar-
itime environment. It shows how to plan a path in real-time for a vehicle to reach a
goal configuration and how to minimise the distance between two vehicles, both while
taking the motion constraints of the vehicle into consideration. It also presents how to re-
duce acoustic localisation error by planning paths for a acoustic beacon to aid submerged
AUVs. The thesis can be seen as a combination between acoustic localisation methods
and path planning. This conclusion will summarise the different chapters and bring at-
tention to the novel work it has lead up to both for publications and the thesis as well as
ideas on how to extend the presented work.

7.1 Summary of Thesis

A review of acoustic localisation techniques can be found in chapter 2, where the focus
is on range based localisation. This is as range-only localisation can, if using One-Way-
Travel-Time, support an arbitrary amount of AUVs with a single message. This is fol-
lowed by a chapter on path planning, where the two major fields are the focus. The first
one is grid-based algorithms and the second one is sampling-based, two very different
approaches which both have their benefits and drawbacks which will be taken advantage
of in this thesis. Section 2.9 presents the concept of Communication and Navigation Aid,
where a vehicle is dedicated to support other vehicles with acoustic messages to improve
localisation as well as acting as a communication relay to be able to extend the commu-
nication for submerged vehicles to have a communication-link with operators far away
(through the CNA relaying acoustic communication and electromagnetic). This chapter
shows how different path planning and knowledge about acoustic localisation methods
can be combined to improve the reliability of AUVs while submerged.

Chapter 4 presents a path planner to find a path from an initial configuration qstart to a
goal qgoal while taking the vehicle’s motion constraints into consideration. It is an exten-
sion to HA* to handle online planning and reparation of paths in 3D. It uses priority-based
expansion of a search tree which uses a motion pattern to create new configurations for
expansion of the vehicle to ensure that found paths are both feasible and collision free.
It has been developed for non-holonomic vehicles such as a torpedo-shaped AUV. How-
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ever, the algorithm is based on a supplied pattern representing a discrete set of feasible
motions, and can hence be adapted to an arbitrary vehicle.

Chapter 5 presents motion planner for leader-follower scenarios. The planner is for
control of the follower. It is based on an extension of the planner presented in chapter
4. It is based on expanding a search tree using a motion pattern to minimise the average
distance between the vehicles over time. The planner takes the kinematic constraints of
the follower vehicle into consideration to be able to find paths which aim to minimise the
average distance over time between the vehicles in scenarios where the follower vehicle’s
minimum speed is greater than the leader’s maximum.

Chapter 6 extends chapter 5 where a surface vehicle is acting as a follower to have
a surface vehicle to have it act as a navigational aid to submerged AUVs. In this chap-
ter, instead of having the goal to reduce the distance between the vehicles, the surface
vehicle instead searches for spatio-temporal paths for transmission of acoustic messages
where and when they should help reduce the uncertainty of the receiving AUVs to the
greatest extent. This approach uses a mixture between exploration using a search tree
with sampling-based techniques to plan a list of waypoints for the vehicle based on sparse
updates from the AUVs.

7.2 Contributions From the Thesis

The following section gives a brief presentation of some of the work which has been and
is planned to be published from this thesis.

7.2.1 Online Path Planning Methods

This thesis has led to the development of multiple path planning methods able to produce
plans for various scenarios in real-time. The first one presented in chapter 4 is an online
path planner with re-planning capabilities which has not yet been published as the plan
is to extend this work with anytime planning and then publish. The second planner pre-
sented is a leader-follower scenario which handles all types of scenarios where leader and
follower are under either same or different motion capabilities. This work was presented
at IEEE MTS/OCEANS 2018 in Charleston [158]. The third planner presented aims to
combine knowledge on how to improve acoustic localisation and path-planning as a path-
planning approach. This work plans the path of a support vehicle to transmit localisation
messages to AUVs from locations, and times, at which the reduction of uncertainty on the
receiving platforms should be the greatest. This work was published as an IEEE Robotics
and Automation Letter [159] and will be presented at IEEE/RSJ International Conference
on Intelligent Robots and Systems in Macau, 2019.
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These three planners go from the classical objective of planning a path from an initial
state to a goal region to more application based path planning. The first presented planner
is extended to the second which instead of reaching a goal, has as objective the minimisa-
tion of distance between two vehicles. Which in turn lead to the work of planning a path
for a vehicle aiming to stay within communication distance and to improve geometric
relationships for acoustic localisation.

7.2.2 Acoustic Localisation

The work of this thesis started with looking at acoustic localisation in cooperative mis-
sions between Autonomous Surface Vehicles and Autonomous Underwater Vehicles, where
the first project led to the development of a Moving Long Baseline simulator for Non-
linear Least Squares using multiple vehicles. A paper for this was published in IEEE
MTS/OCEANS 2017, Aberdeen [160]. It later changed direction more towards cooper-
ative operations. This included a spatio-temporal planner from transmitting localisation
messages. A part of that problem was to look at when to transmit localisation messages,
within a Time-Division Multiple Access time slot, such that the uncertainty on receiving
vehicles are estimated to be reduce by the most. A paper on this was presented at IEEE
MTS/OCEANS in Marsielle 2019 [159], this work has been described in section 5.4.

7.2.3 Communication Relay

During this thesis collaborations with a group working on trying to improve the confi-
dence and situation understanding for AUVs operators has been performed. Their re-
search is on how to use natural language to present the very limited data transmitted
from Autonomous Underwater Vehicles over acoustic communication to a more under-
standable format, in this case a chat-bot1. For some missions performed using of the shelf
products (Iver-2, Sonobot and SeeByte software) they needed a way to listen to the acous-
tic messages from the Autonomous Underwater Vehicles while not necessarily being at
the location of the operation. From this requirement a communication-relay framework
was developed to use a surface vehicle as a translator from acoustic communication to
wi-fi, enabling the operators to chat with the submerged vehicle using a surface vehicle
with multi-modal communication. This communication relay software was part of a pub-
lication in IEEE OES Autonomous Underwater Vehicle Symposium 2018 in Porto [162],
and the 2019 ACM conference on Designing Interactive Systems in San Diego [163].

1MIRIAM [161]
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7.3 Future Work

This thesis is not an absolute solution to any of the problems it addresses. It does however
present novel work for path planning which has shown good results for the specified
scenarios. However, there are still many exciting opportunities to extend the work here to
improve it even further.

Anytime Dynamic Hybrid-State A*. The current state of PBHA* includes re-planning
of paths using previously explored branches in the search tree. As was shown in chapter
4, using highly weighted heuristics can find sub-optimal paths in a fraction of the time
as non-weighted heuristics. As the weight goes towards 1, the solution goes towards the
optimal as well as the number of expanded node increases (and therefore also the time).
By initially solving the problem with highly weighted heuristics and starting to execute
the plan, the vehicle can during its path keep decreasing the weight while updating and
performing the search from the current tree until either the goal is found or the weight
becomes 1 (non-weighted).

Maximise optical communication time for a leader-follower scenario. Chapter 5
was developed based on the results from a trial to test optical communication between a
submerged and a surface vehicle. The surface vehicle was roughly at all time 3 times faster
than the AUV and hence could not stay on top of it for a long time. If the region in which
the optical communication can be used is known, it could be used as an objective for the
planner to aim to maximise the time where this method of high bandwidth communication
can be used.

Maximise FIM as path planning goal for improved NLS acoustic localisation.
The planner presented in chapter 6 to improve acoustic localisation on AUVs by posi-
tioning the transmitter is based on estimating the results on an EKF. However, as has
been shown earlier both in this thesis and references provided, NLS is in many cases the
superior range-only localisation method. By instead planning to maximise the FIM for all
vehicles being supported, the same method should be usable as long as the cost function
is changed. Having both cost functions available would make for a versatile algorithm
able to cope with many situations. Similar thoughts can be applied to localising nodes in
a sensor network.

In-water trials. Up to the point of writing this thesis there have only been limited in-
water trials. There are planned integrations with SeeByte’s autonomy framework Neptune
[152] for some of the work in chapter 5 and 6. The leader-follower algorithm has been
integrated on a Raspberry PI and shown to be able to run in real-time. However, due to
the vehicle not being tested before trial with Neptune, issues occurred which could not be
solved during the trials.
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A Appendix

This appendix will serve as a description of relevant work for the thesis, which did not
have a natural place within the main part of it.

A.1 EvoLogics Modem ROS Drivers

To enable the usage of the EvoLogics modem [164] equipped on available vehicles — a
driver for ROS was developed. This was then used for sea trials both for data communi-
cation and distance measurement. The drivers were also implemented into the necessary
products from SeeByte to enable the vehicles to be used with SeeTrack and Neptune as
well as to enable the communication relay described below.

A.2 Communication Relay

During this thesis, a software for communication relay was developed. The implemen-
tation is done as a ROS-node [142]. It is running as a TCP server, allowing connected
nodes to receive and transmit acoustic messages through the communication relay. It has
been used successfully in multiple missions [162, 163], allowing a CCC placed in a posi-
tion where it could not deploy an acoustic modem in the water to use an ASV (Sonobot)
to relay information to and from an AUV (IVER-3). The work was integrated with the
commercially available products from Seebyte: Neptune [152] and SeeTrack [165], along
with the natural language interface MIRIAM [161]. This allowed operators to in a natural
way query the submerged and operating AUV about its mission and vehicle status etc.,
without having any direct way to communicate with it.

A.3 Sonobot

EvoLogics have developed a small catamaran ASV named Sonobot [166] as can be seen in
Fig. 89. The Sonobot have been used both as an autonomous vehicle and as the platform
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A.3. Sonobot

Fig. 88: A TCP server allows other platforms to receive and transmit acoustic messages
through a platform equipped with an acoustic modem. Running as a stand-alone ROS-
node this system can be deployed on an arbitrary vehicle to easily enable communication
relay.

acting as the communication relay described.

Fig. 89: Sonobot is an ASV from EvoLogics.

To enable Neptune to work on the vehicle, a backseat computer (Raspberry PI) was
integrated to be able to control and monitor the robot, otherwise running DUNE, through
Neptune as a backseat driver.

132



Bibliography

[1] A. Cormack, D. M. Lane, and J. Wood, “Operational Experiences for Maritime
Homeland Security Operations,” OCEANS’10 IEEE SYDNEY, pp. 1–7, 2010.

[2] S. Reed, Y. Petillot, and J. Bell, “An automatic approach to the detection and ex-
traction of mine features in sidescan sonar,” IEEE Journal of Oceanic Engineering,
vol. 28, no. 1, pp. 90–105, 2003.

[3] P. Ridao, M. Carreras, and D. e. Ribas, “Intervention AUVs: The Next Chal-
lenge,” 19th World Congress of The International Federation of Automatic Control,
p. 12146, 2014.

[4] D. Bingham, T. Drake, A. Hill, R. Lott, and A. W. Hill, “The Application of Au-
tonomous Underwater Vehicle (AUV) Technology in the Oil Industry – Vision and
Experiences,” TS4.4 Hydrographic Surveying II, pp. 1–13, 2002.

[5] W. G. E. Group, “https://www.westwoodenergy.com/product/world-auv-market-
forecast-2018-2022/,” 2018.

[6] M. Dunbabin and L. Marques, “Robots for environmental monitoring: Signifi-
cant advancements and applications,” IEEE Robotics and Automation Magazine,
vol. 19, no. 1, pp. 24–39, 2012.

[7] F. Dayoub, M. Dunbabin, and P. Corke, “Robotic detection and tracking of Crown-
of-Thorns starfish,” IEEE International Conference on Intelligent Robots and Sys-

tems, vol. 2015-Decem, pp. 1921–1928, 2015.

[8] C. Kunz, C. Murphy, R. Camilli, H. Singh, J. Bailey, R. Eustice, M. Jakuba, K. I.
Nakamura, C. Roman, T. Sato, R. A. Sohn, and C. Willis, “Deep sea underwater
robotic exploration in the ice-covered arctic ocean with AUVs,” 2008 IEEE/RSJ

International Conference on Intelligent Robots and Systems, IROS, pp. 3654–3660,
2008.

[9] C. Roman and R. Mather, “Autonomous underwater vehicles as tools for deep-
submergence archaeology,” Proceedings of the Institution of Mechanical Engineers

Part M: Journal of Engineering for the Maritime Environment, vol. 224, no. 4,
pp. 327–340, 2010.

133



Bibliography
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